Skip to main content
Log in

Suspension polymerization technique: parameters affecting polymer properties and application in oxidation reactions

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Various heterogeneous polymerization techniques such as suspension, emulsion, dispersion, precipitation and seeded are employed for the synthesis of a wide variety of porous polymer particles. In present review, suspension polymerization technique is highlighted in detail with control of particle size, advantages and its applications. The aim of the review is to understand the basics of suspension polymerization for the synthesis of polystyrene cross-linked with divinylbenzene copolymer. Also, the effect of various synthesis parameters (agitation speed, temperature, initiator, cross-linker and diluent) on particle surface morphology, particle size and distribution, surface area and cross-linking density was reviewed and their application as catalyst support for various oxidation reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PS:

Polystyrene

DVB:

Divinyl Benzene

AIBN:

Azobiz isobutyl nitrile

THF:

Tetrahydrofuran

PMMA:

Polymethyl methacrylate

PEG:

Polyethylene glycol

BPO:

Benzoyl peroxide

EGDMA:

Ethylene glycol monomethyl ether

TEGDA:

Tetraethyleneglycol diacrylate

PVC:

Polyvinylchloride

PVA:

Polyvinyl acetate

PAAm:

Polyacrylamide

TFE:

Tetrafluoro-ethylene

ACN:

acrylonitrile

PE:

Polyethylene

PAc:

Polyacrylates

References

  1. Gokmen MT, Prez FED (2012) Porous polymer particles—A comprehensive guide to synthesis, characterization, functionalization and applications. Prog Polym Sci 37:365–405

    CAS  Google Scholar 

  2. Prasath RA, Gokmen MT, Espeel P, Prez FED (2010) Thiol-ene and thiol-yne chemistry in microfluidics: a straightforward method towards macroporous and nonporous functional polymer beads. Polym Chem 1:685

    CAS  Google Scholar 

  3. Qi S, Zhifeng D, Xiangju M, Shou XF (2015). Chem Soc Rev 44:6018

    Google Scholar 

  4. Dowding PJ, Goodwin JW, Vincent B (1998) The characterization of porous styrene–glycidyl methacrylate copolymer beads prepared by suspension polymerization. Colloids Surf A Physicochem Eng Asp 145:263–270

    CAS  Google Scholar 

  5. Heydarpoor S, Abbasi F, Jalili K, Najafpour M (2015) Synthesis of core-shell PS/PMMA expandable particles via seeded suspension polymerization. J Polym Res 22:151

    Google Scholar 

  6. El-Aassar MR, Soliman EA, Hashem AI, sun G, Amaly N (2017) Preparation and characterization of poly (styrene-co-Methacrylic acid) copolymer nanoparticles via precipitation polymerization. J Polym Res 24:207

    Google Scholar 

  7. Arshady R (1992) Suspension, emulsion, and dispersion polymerization: a methodological survey. Colloid Polym Sci 270:717–732

    CAS  Google Scholar 

  8. Tomovska R, Cal JC, Asua JM (2014). Wiley, New York, pp 59

  9. Lima EV, Wood PE, Hamielec A (1997) An updated review on suspension polymerization. Ind Eng Chem Res 36:939–965

    Google Scholar 

  10. McNamara CA, Dixon MJ, Bradley M (2002) recoverable catalysts and reagents using recyclable polystyrene-based supports. Chem Rev 102:3275–3300

    CAS  PubMed  Google Scholar 

  11. Hosseinzadeh S, Saadat Y, Abdolbaghi S, Taromi FA, Hosseinzadeh A (2014) Shape of the particles produced by seeded dispersion polymerization of styrene. Collod J 76:104–112

    CAS  Google Scholar 

  12. Kim JW, Suh K (2008) Monodisperse polymer particles synthesized by seeded polymerization techniques. J Ind Eng Chem 14:1–9

    CAS  Google Scholar 

  13. Kim JW, Suh K (2000) Monodisperse micron-sized polystyrene particles by seeded polymerization: effect of seed crosslinking on monomer swelling and particle morphology. Polymer 41:6181–6188

    CAS  Google Scholar 

  14. Lee K, Wi H (2010) Highly crosslinked micron-sized, monodispersed polystyrene particles by batch dispersion polymerization, Part 1: Batch, delayed addition, and seeded batch processes. J Appl Polym Sci 115:297–307

    CAS  Google Scholar 

  15. Qi Z, Han Y, Wang W, Song T, Chang J (2010). J Colloid Interface Sci 342:62

    Google Scholar 

  16. Kim JW, Ryu J, Suh K (2001) Monodisperse micron-sized macroporous poly(styrene- co -divinylbenzene) particles by seeded polymerization. Collod Polym Sci 279:146–152

    CAS  Google Scholar 

  17. Siddiqui MN, Redhwi HH, Vakalopoulou E, Tsagkalias I, Ioannidou MD, Achilias DS (2015) Synthesis, characterization and reaction kinetics of PMMA/silver nanocomposites prepared via in situ radical polymerization. Eur Polym J 72:256–269

    CAS  Google Scholar 

  18. Meouche W, Laatikainen K, Margaillan A, Silvonen T, Siren H, Sainio T, Beurroies I, Denoyel R, Branger C (2017) Effect of porogen solvent on the properties of nickel ion imprinted polymer materials prepared by inverse suspension polymerization. Eur Polym J 87:124–135

    CAS  Google Scholar 

  19. Ballard N, Aguirre M, Simula A, Leiza JR, Es S, Asua JM (2017) Nitroxide mediated suspension polymerization of methacrylic monomers. Chem Eng J 316:655–662

    CAS  Google Scholar 

  20. Asua JM (2018) Ostwald ripening of reactive costabilizers in miniemulsion polymerization. Eur Polym J 106:30–41

    CAS  Google Scholar 

  21. Schmidt BVKJ, Molinari V, Esposito D, Tauer K, Antonietti M (2017) Lignin-based polymeric surfactants for emulsion polymerization. Polymer 112:418–426

    CAS  Google Scholar 

  22. Sudjaipraparat N, Kaewsaneha C, Nuasaen S, Tangboriboonrat P (2017) One-pot synthesis of non-spherical hollow latex polymeric particles via seeded emulsion polymerization. Polymer 121:165–172

    CAS  Google Scholar 

  23. Silverstein MS (2017) Emulsion-templated polymers: Contemporary contemplations. Polymer 126:261–282

    CAS  Google Scholar 

  24. Cordoba CA, Collins SE, Passeggi Jr MCG, Vaillard SE, Gugliotta LM, Minari RJ (2018) Crosslinkable acrylic-melamine latex produced by miniemulsion polymerization. Prog Org Coat 118:82–90

    CAS  Google Scholar 

  25. Yamamoto T, Kawaguchi K, Takahashi Y (2016) Particle size control in the soap-free emulsion polymerization of styrene by an oil-soluble initiator with a weakly acidic water-soluble initiator. Colloids Surf A Physicochem Eng Asp 502:1–5

    CAS  Google Scholar 

  26. Oliveira PF, Machado RAF, Barth D, Acosta ED (2016) Dispersion polymerization of methyl methacrylate in supercritical carbon dioxide using vinyl terminated poly(dimethylsiloxane). Chem Eng Process 103:46–52

    CAS  Google Scholar 

  27. Chen R, Ren N, Jin X, Zhu X (2018) Stabilization capacity of PNIPAM microgels as particulate stabilizer in dispersion polymerization. Colloids Surf A Physicochem Eng Asp 538:789–794

    CAS  Google Scholar 

  28. Yang W, Hutchinson RA (2017) The influence of adding functionality to dispersant and particle core compositions in non-aqueous dispersion polymerization. React Funct Polym 114:31–37

    CAS  Google Scholar 

  29. Tan J, Li C, Dan S, Li H, Gu J, Zhang B, Zhang H, Zhang Q (2016). Chem Eng J 304:461

    CAS  Google Scholar 

  30. Wang X, Shen L, An Z (2018) Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog Polym Sci 83:1–27

    Google Scholar 

  31. Medeiros SF, Filizzola JOC, Oliveira PFM, Silva TM, Lara BR, Lopes MV, Bergmann BR, Elaissari A, Santos AM (2016) Fabrication of biocompatible and stimuli-responsive hybrid microgels with magnetic properties via aqueous precipitation polymerization. Mater Lett 175:296–299

    CAS  Google Scholar 

  32. Zhang H (2013) Controlled/“living” radical precipitation polymerization: a versatile polymerization technique for advanced functional polymers. Eur Polym J 49:579–600

    CAS  Google Scholar 

  33. Wang X, Huang P, Ma X, Du X, Lu X (2018) Magnetic mesoporous molecularly imprinted polymers based on surface precipitation polymerization for selective enrichment of triclosan and triclocarban. J Chromatogr A 1537:35–42

    CAS  PubMed  Google Scholar 

  34. Huang H, Wang H, Wu Y, Shi Y, Deng J (2018) Chiral, crosslinked, and micron-sized spheres of substituted polyacetylene prepared by precipitation polymerization. Polymer 139:76–85

    CAS  Google Scholar 

  35. Jolly HC, Guillot P, Mignard E (2018) Supercritical continuous precipitation polymerization of acrylic acid in a droplet-based millifluidic device. Chem Eng J 334:389–399

    Google Scholar 

  36. Chaitidou S, Kotrotsiou O, Kotti K, Kammona O, Bukhari M, Kiparissides C (2008) Precipitation polymerization for the synthesis of nanostructured particles. Mater Sci Eng B 152:55–59

    CAS  Google Scholar 

  37. Kao YC, Whang WT, Chen YC, Chen KC (2017) Effect of crosslinking agents on the dispersive behaviour of polymer particles in seed swelling polymerisation. J Ind Eng Chem 51:216–222

    CAS  Google Scholar 

  38. Pei X, Zhai K, Liang X, Deng Y, Xu K, Tan Y, Yao X, Wang P (2018) Fabrication of shape-tunable macroparticles by seeded polymerization of styrene using non-cross-linked starch-based seed. J Colloid Interface Sci 512:600–608

    CAS  PubMed  Google Scholar 

  39. Zhang Z, Shao H, Zhou X, Zhao L, Liu H, Ji X, Liu H (2017) Controllable synthesis of anisotropic silica/polymer composite particles via seeded dispersion polymerization. Mater Chem Phys 195:105–113

    CAS  Google Scholar 

  40. Yao Y, Cao Z, Shang Y, Chen Q, Yang L, Zhang Y, Qi D (2017) Preparation of polymeric/inorganic nanocomposite particles in miniemulsions: II. Narrowly size-distributed polymer/SiO2 nanocomposite particles. Colloids Surf A Physicochem Eng Asp 530:104–116

    CAS  Google Scholar 

  41. Kim D, Lee DY, Lee K, Choe S (2009) Effect of crosslinking agents on the morphology of polymer particles produced by one-step seeded polymerization. Macromol Res 17:250–258

    CAS  Google Scholar 

  42. Park J, Kim Y, Yoon H, Jun LBY (2011) Preparation of pore size controllable macroporous polymer beads. J Ind Eng Chem 17:794–798

    CAS  Google Scholar 

  43. Wang H, Xie G, Fang M, Ying Z, Tong Y, Zeng Y (2017) Mechanical reinforcement of graphene/poly(vinyl chloride) composites prepared by combining the in-situ suspension polymerization and melt-mixing methods. Composites Part B 113:278–284

    CAS  Google Scholar 

  44. Kiatkamjornwong S, Chientachakul P, Prasassarakich P, Damronglerd S (2001) Kinetic studies on styrene-divinylbenzene copolymerization by suspension technique. J Appl Polym Sci 82:1521–1540

    CAS  Google Scholar 

  45. Ober CK, Hair ML (1987). J Appl Polym Sci 25:1395

    CAS  Google Scholar 

  46. Kichatov BV, Korshunov AM, Assorova PV (2003). Theor Found Chem Eng 37:305

    Google Scholar 

  47. Liu Q, Wang L, Xiao A, Yu H (2010) The spherical cleavage behavior of Polydivinylbenzene during suspension polymerization. Des Mon Polym 13:369–375

    CAS  Google Scholar 

  48. Nunes DSS, Coutinho FMB (2002) Acrylonitrile–divinylbenzene copolymer beads: influence of pre-polymerization step, stirring conditions and polymerization initiator type on the polymer particle characteristics. Eur Polym J 38:1159–1165

    CAS  Google Scholar 

  49. Rodrigo R, Toro CA, Cuellar J (2013) Morphological characteristics of poly(styrene-co-divinylbenzene) microparticles synthesized by suspension polymerization. Powder Technol 247:279–288

    CAS  Google Scholar 

  50. Okudaira G, Kamogawa K, Sakai T, Sakai H, Abe M (2003). J Oleo Sci 53:167

    Google Scholar 

  51. Svec F, Frechet JMJ (1995) Temperature, a Simple and Efficient Tool for the Control of Pore Size Distribution in Macroporous Polymers. Macromol 28:7580–7582

    CAS  Google Scholar 

  52. Hulubei C, Vlad CD, Stoica I, Popovici D, Lisa G, Nica SL, Barzic AL (2014) New polyimide-based porous crosslinked beads by suspension polymerization: physical and chemical factors affecting their morphology. J Polym Res 21:514

    Google Scholar 

  53. Hoffman F, Delbruch K (1909) Patent (Ger.) No. 250 690, Farbenfabriken Bayer, Germany

  54. Svec F, Frechet JMJ (1995). Biotechnol Bioeng 48:476

    CAS  PubMed  Google Scholar 

  55. Viklund C, Svec F, Frechet JMJ, Irgum K (1996) Monolithic, “molded”, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: control of porous properties during polymerization. Chem Mater 8:744–750

    CAS  Google Scholar 

  56. Petro M, Svec F, Frechet JMJ (1996) Immobilization of trypsin onto “molded” macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate) rods and use of the conjugates as bioreactors and for affinity chromatography. Biotechnol Bioeng 49:355–363

    CAS  PubMed  Google Scholar 

  57. Petro M, Svec F, Frechet JMJ (1996) Molded continuous poly(styrene-co-divinylbenzene) rod as a separation medium for the very fast separation of polymers comparison of the chromatographic properties of the monolithic rod with columns packed with porous and non-porous beads in high-performance liquid chromatography of polystyrenes. J Chromatogr A 752:59–66

    CAS  PubMed  Google Scholar 

  58. Xie SF, Svec F, Frechet JMJ (1997) Preparation of porous hydrophilic monoliths: Effect of the polymerization conditions on the porous properties of poly (acrylamide-co-N,N?-methylenebisacrylamide) monolithic rods. J Polym Sci Part A Polym Chem 35:1013–1021

    CAS  Google Scholar 

  59. Peters EC, Svec F, Frechet JMJ (1997) Preparation of Large-Diameter “Molded” Porous Polymer Monoliths and the Control of Pore Structure Homogeneity. Chem Mater 9:1898–1902

    CAS  Google Scholar 

  60. Xie SF, Svec F, Frechet JMJ (1997) Rigid porous polyacrylamide-based monolithic columns containing butyl methacrylate as a separation medium for the rapid hydrophobic interaction chromatography of proteins. J Chromatogr A 775:65–72

    CAS  PubMed  Google Scholar 

  61. Peters EC, Petro M, Svec F, Frechet JMJ (1998) Molded rigid polymer monoliths as separation media for capillary electrochromatography. 1. fine control of porous properties and surface chemistry. Anal Chem 70:2288–2295

    CAS  PubMed  Google Scholar 

  62. Alexopoulos AH, Kiparissides C (2007) On the prediction of internal particle morphology in suspension polymerization of vinyl chloride. Part I. Chem Eng Sci 62:3970–3983

    CAS  Google Scholar 

  63. Tan L, Tan B (2016) Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 46:3322–3356. https://doi.org/10.1039/c6cs00851h

    Article  CAS  Google Scholar 

  64. Bauer W, Lauth H (1931) Patent (Ger.) No. 656, 134, Rohm and Hass, Darmstadt

  65. Hosenstein WP, Mark H (1946) Polymerization of olefins and diolefins in suspension and emulsion. Part I. Int J Polym Sci 1:127–145

    Google Scholar 

  66. Trommsdorff E, Kohle H, Lagally P (1948) Zur polymerisation des methacrylsäuremethylesters1. Macromol Chem 1:169–198

    CAS  Google Scholar 

  67. Munzer M, Trommsdorff E (1997). High Polym 29:106

    Google Scholar 

  68. Yuan HG, Kalfas G, Ray WH (1991) Suspension polymerization. J Macromol Sci Rev Macrolol Chem Phys C 31:215–299

    Google Scholar 

  69. Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711–779

    CAS  Google Scholar 

  70. Kita R, Svec F, Frechet JMJ (2001) Hydrophilic polymer supports for solid-phase synthesis: preparation of Poly(ethylene glycol) methacrylate polymer beads using “classical” suspension polymerization in aqueous medium and their application in the solid-phase synthesis of hydantoins. J Comb Chem 3:564–571

    CAS  PubMed  Google Scholar 

  71. Slater M, Snauko M, Svec F, Frechet JMJ (2006) “Click chemistry” in the preparation of porous polymer-based particulate stationary phases for μ-HPLC separation of peptides and proteins. Anal Chem 78:4969–4975

    CAS  PubMed  Google Scholar 

  72. Mohammed ML, Mbeleck R, Saha B (2015) Efficient and selective molybdenum based heterogeneous catalyst for alkene epoxidation using batch and continuous reactors. Polym Chem 6:7308–7319

    CAS  Google Scholar 

  73. Mouradzadegun A, Mostafavi MA (2016) Copper-loaded hypercrosslinked polymer decorated with pendant amine groups: a green and retrievable catalytic system for quick [3 + 2] Huisgen cycloaddition in water. RSC Adv 6:42522–42531

    CAS  Google Scholar 

  74. Saadati F, Khani N, Rahmani M, Piri F (2016) Preparation and characterization of nanosized copper (II) oxide embedded in hyper-cross-linked polystyrene: highly efficient catalyst for aqueous-phase oxidation of aldehydes to carboxylic acids. Catal Commun 79:26–30

    CAS  Google Scholar 

  75. Taguchi Y, Suzuki T, Saito N, Yokoyama H, Tanaka M (2017) Preparation of polymer composite particles by phase separation followed by suspension polymerization. Open J Compos Mater 7:1–13

    Google Scholar 

  76. Alva G, Lin Y, Liu L, Fang G (2017) Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review. Energy Buil 144:276–294

    Google Scholar 

  77. Dowding PJ, Vincent B (2000) Suspension polymerisation to form polymer beads. Colloids Surf A Physicochem Eng Asp 161:259–269

    CAS  Google Scholar 

  78. Liang YC, Svec F, Frechet JMJ (1997) Preparation and functionalization of reactive monodisperse macroporous poly(chloromethylstyrene-co-styrene-co-divinylbenzene) beads by a staged templated suspension polymerization. J Polym Sci Part A Polym Chem 35:2631–2643

    CAS  Google Scholar 

  79. Arshady R, Ledwith A (1983). React Polym 1:159

    CAS  Google Scholar 

  80. Minami H, Kojima A, Suzuki T (2017) Preparation of flattened cross-linked hollow particles by suspension polymerization in a solid dispersion medium. Langmuir 33:1541–1546

    CAS  PubMed  Google Scholar 

  81. Erbay E, Bilgic T, Karali M, Savasci OT (1992) Polystyrene suspension polymerization: the effect of polymerization parameters on particle size and distribution. Polym-Plast Technol Eng 31:589–605

    CAS  Google Scholar 

  82. Lima EV, Hamielec AE, Wood PE (1994) Auto-acceleration effect in free radical polymerization. A comparison of the CCS and MH models. Polym React Eng 2:17–85

    Google Scholar 

  83. Villalobos MA, Hamielec AE, Wood PE (1993) Bulk and suspension polymerization of styrene in the presence of n-pentane. An evaluation of monofunctional and bifunctional initiation. J Appl Polym Sci 50:327–343

    CAS  Google Scholar 

  84. Grochowicz M, Gawdzik B (2013) Preparation and characterization of porous crosslinked microspheres of new aromatic methacrylates. J Porous Mater 20:339–349

    CAS  Google Scholar 

  85. Sharma S, Sinha S, Biswas P, Maurya MR, Chand S (2013) Oxidation of styrene over polymer- and nonpolymer-anchored Cu(II) and Mn(II) complex catalysts. J Appl Polym Sci 127:3424–3434

    CAS  Google Scholar 

  86. Sharma S, Sinha S, Chand S (2012) Polymer anchored catalysts for oxidation of styrene using TBHP and molecular oxygen. Ind Eng Chem Res 51:8806–8814

    CAS  Google Scholar 

  87. Sarkar S, Guibal E, Quignard F, SenGupta AK (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanopart Res 14:715

    Google Scholar 

  88. Dioos BML, Vankelecom IFJ, Jacobs PA (2006) Aspects of Immobilisation of catalysts on polymeric supports. Adv Synth Catal 348:1413–1446

    CAS  Google Scholar 

  89. Tank R, Gupta DC (2009) Modification of styrene-divinyl benzene copolymers using monoacrylates as ter-monomer. J Porous Mater 16:387–392

    CAS  Google Scholar 

  90. Apostolidou C, Stamatoudis M (1990) On particle size distribution in suspension polymerization of styrene. Collect Czechoslov Chem Commun 55:2244–2251

    CAS  Google Scholar 

  91. Portnikov D, Kalman H (2018) The effect of temperature on the mechanical characteristics of individual particles. Powder Technol 336:393–405

    CAS  Google Scholar 

  92. Azouz KB, Bekkour K, Dupuis D (2016) Influence of the temperature on the rheological properties of bentonite suspensions in aqueous polymer solutions. Appl Clay Sci 123:92–98

    Google Scholar 

  93. Ng WS, Cooper L, Connal LA, Forbes E, Jameson GJ, Franks GV (2018) Tuneable collector/depressant behaviour of xanthate-functional temperature-responsive polymers in the flotation of copper sulfide: effect of shear and temperature. Miner Eng 117:91–99

    CAS  Google Scholar 

  94. Zhenga T, Pilla S (2018) Encapsulation of hydrophilic payload by PU-PMF capsule: effect of melamine-formaldehyde pre-polymer content, pH and temperature on capsule morphology. Colloids Surf A Physicochem Eng Asp 542:59–67

    Google Scholar 

  95. Gritskova IA, Zhachenkov SV, Tsarkova MS, Levachev SM, Simakova GA, Khaddazh M, Prokopov NI (2011). Polymer Sci 53:568

    CAS  Google Scholar 

  96. Mane S, Ponrathnam S, Chavan N (2015). Can Chem Trans 3:473

    CAS  Google Scholar 

  97. Mane S, Ponrathnam S, Chavan N (2016). Can Chem Trans 4:192

    CAS  Google Scholar 

  98. Luz CTL, Coutinho FMB (2001). Polymer 42:4931

    Google Scholar 

  99. Daminova SS, Kadirova ZC, Sharipov KT, Stoyko OV, Chepulsky SA, Adewuyi A, Hojamberdiev M (2017) Diisopropyldithiophosphoric acid-impregnated macroporous non-ionogenic styrene-divinylbenzene polymeric sorbent (Porolas) for effective copper extraction. J Ind Eng Chem 55:204–214

    CAS  Google Scholar 

  100. Lu L, Jiang C, Xiufang W, Pihui P, Zhuoru Y (2006). Chin J Chem Eng 14:471

    Google Scholar 

  101. Kiatkamjornwong S, Traissaranapong S, Prasassarakich P (1999). J Porous Mater 6:215–229

    Google Scholar 

  102. Aungsurpravate O, Kangwansupamonkon W, Chavasiri W, Kiatkamjornwong S (2007). Polym Eng Sci 447

  103. Mane S (2016). Can Chem Trans 4:210

    CAS  Google Scholar 

  104. Hao D, Gong F, Wei W, Hu G, Ma G, Su Z (2008) Porogen effects in synthesis of uniform micrometer-sized poly(divinylbenzene) microspheres with high surface areas. J Colloid Interface Sci 323:52–59

    CAS  PubMed  Google Scholar 

  105. Calabrase RV, Chang TPK, Dang PT (1986) Drop breakup in turbulent stirred-tank contactors. Part I: Effect of dispersed-phase viscosity. AICHE J 32:657–666

    Google Scholar 

  106. Borwankar RP, Chung SI, Wasan DT (1986). J Appl Polym Sci 329:5749

    Google Scholar 

  107. Bourne JR, Baldyga (1994). J Chem Eng Sci 499:1077

    Google Scholar 

  108. Coulaloglou CA, Tavlarides LL (1976). AICHE J 229:289

    Google Scholar 

  109. Doulah MS (1975). Ind Eng Chem Fundam 149:137

    Google Scholar 

  110. Chaudhary V, Sweta (2016). IJSER 7:1743–1748

    Google Scholar 

  111. Chaudhary V, Sweta (2017). J Porous Mater 24:741–749

    CAS  Google Scholar 

  112. Fu Y, Xu L, Shen H, Yang H, Zhang F, Zhu W, Fan M (2016) Tunable catalytic properties of multi-metal–organic frameworks for aerobic styrene oxidation. Chem Eng J 299:135–141

    CAS  Google Scholar 

  113. Tamami B, Ghasemi S (2011) Modified crosslinked polyacrylamide anchored Schiff base–cobalt complex: a novel nano-sized heterogeneous catalyst for selective oxidation of olefins and alkyl halides with hydrogen peroxide in aqueous media. Appl Catal A Gen 393:242–250

    CAS  Google Scholar 

  114. Godhani DR, Nakum HD, Parmar DK, Mehta JP, Desai NC (2016) Tuning of the reaction parameters to optimize allylic oxidation of cyclohexene catalyzed by zeolite-Y entrapped transition metal complexes. J Mol Catal A Chem 415:37–55

    CAS  Google Scholar 

  115. Sherrington DC (1980). British Polym J 70

  116. Kralik M, Corain B, Zecca M (2000). Chem Pap 54:254

    CAS  Google Scholar 

  117. Arnold U (2008) Mechanisms in homogeneous and heterogeneous epoxidation catalysis, p 387

    Google Scholar 

  118. Collma JP, Kosydar KM, Bressan M, Lamanna W, Garrett T (1984) Polymer-bound substrates: a method to distinguish between homogeneous and heterogeneous catalysis. J Am Chem Soc 106:2569–2579

    Google Scholar 

  119. Gravert DJ, Janda KD (1997) Organic synthesis on soluble polymer supports: liquid-phase methodologies. Chem Rev 97:489–510

    CAS  PubMed  Google Scholar 

  120. Merrifield B (1984) The role of the support in solid phase peptide synthesis. British Polym J 16:173–178

    CAS  Google Scholar 

  121. Yamaguchi K, Mizuno N (2003) Scope, kinetics, and mechanistic aspects of aerobic oxidations catalyzed by ruthenium supported on alumina. Chem Eur J 9:4353–4361

    CAS  PubMed  Google Scholar 

  122. Abad A, Concepcion P, Corma A, Garcia H (2005) A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem Int Ed 44:4066–4069

    CAS  Google Scholar 

  123. Jamwal N, Gupta M, Paul S (2008) Hydroxyapatite-supported palladium (0) as a highly efficient catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols in water. Green Chem 10:999

    CAS  Google Scholar 

  124. Renuka MK, Gayathri V (2018) A polymer supported Cu(II) catalyst for oxidative amidation of benzyl alcohol and substituted amines in TBHP/H 2 O. Catal Commun 104:71–77

    CAS  Google Scholar 

  125. Kaboudin B, Khanmohammadi H, Kazemi F (2017) Polymer supported gold nanoparticles: synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water. Appl Surf Sci 425:400–406

    CAS  Google Scholar 

  126. Wang Y, Huang J, Xia X, Peng X (2018) Fe–Co/sulfonated polystyrene as an efficient and selective catalyst in heterogeneous Baeyer–Villiger oxidation reaction of cyclic ketones. J Saudi Chem Soc 22:129–135

    CAS  Google Scholar 

  127. Gupta KC, Sutar AK (2008) Polymer supported catalysts for oxidation of phenol and cyclohexene using hydrogen peroxide as oxidant. J Mol Catal A Chem 280:173–185

    CAS  Google Scholar 

  128. Hatefi M, Moghadam M, Sheikhshoaei I, Mirkhani V, Tangestaninejad S, Baltork IM, Kargar H (2009) Ru(salophen)Cl supported on polystyrene-bound imidazole: an efficient and robust heterogeneous catalyst for epoxidation of alkenes with sodium periodate. Appl Catal A 370:66–71

    CAS  Google Scholar 

  129. Krishnan GR, Sreekumar K (2009) Polystyrene-supported poly(amidoamine) dendrimer–manganese complex: synthesis, characterization and catalysis. Appl Catal A 353:80–86

    CAS  Google Scholar 

  130. Chang Y, Lv Y, Lu F, Zha F, Lei Z (2010) Efficient allylic oxidation of cyclohexene with oxygen catalyzed by chloromethylated polystyrene supported tridentate Schiff-base complexes. J Mol Catal A Chem 320:56–61

    CAS  Google Scholar 

  131. Tangestaninejad S, Moghadam M, Mirkhani V, Baltork IM, Torki M (2011) Preparation and characterization of molybdenum hexacarbonyl encapsulated in polystyrene and its application as an efficient and reusable catalyst for epoxidation of alkenes with tert-BuOOH. C R Chimie 14:604–610

    CAS  Google Scholar 

  132. Mohammed ML, Mbeleck R, Patel D, Niyogi D, Sherrington DC, Saha B (2015) Greener and efficient epoxidation of 4-vinyl-1-cyclohexene with polystyrene 2-(aminomethyl)pyridine supported Mo(VI) catalyst in batch and continuous reactors. Chem Eng Res Des 94:194–203

    CAS  Google Scholar 

  133. Zhu Y, Zhao W, Hosmane NS (2015) Direct synthesis of carboranylpolystyrene and their applications for oxidation resistance of graphene oxides and catalyst support. J Organomet Chem 798:80–85

    CAS  Google Scholar 

  134. Sharma AS, Kaur H (2017) Au NPs@ polystyrene resin for mild and selective aerobic oxidation of 1,4 dioxane to 1,4 dioxan-2-ol. Catal Commun 90:56–59

    CAS  Google Scholar 

  135. Khatun R, Biswas S, Ghosh S, Islam SM (2018) Polymer-anchored [Fe(III)Azo] complex: an efficient reusable catalyst for oxidative bromination and multi-components reaction for the synthesis of spiropiperidine derivatives. J Organomet Chem 858:37–46

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sweta Sharma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, V., Sharma, S. Suspension polymerization technique: parameters affecting polymer properties and application in oxidation reactions. J Polym Res 26, 102 (2019). https://doi.org/10.1007/s10965-019-1767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1767-8

Keywords

Navigation