Skip to main content
Log in

A multiplex digital PCR assay for detection and quantitation of porcine circovirus type 2 and type 3

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Porcine circovirus (PCV) has become a major pathogen, causing major economic losses in the global pig industry, and PCV type 2 (PCV2) and 3 (PCV3) are distributed worldwide. We designed specific primer and probe sequences targeting PCV2 Cap and PCV3 Rap and developed a multiplex crystal digital PCR (cdPCR) method after optimizing the primer concentration, probe concentration, and annealing temperature. The multiplex cdPCR assay permits precise and differential detection of PCV2 and PCV3, with a limit of detection of 1.39 × 101 and 1.27 × 101 copies/reaction, respectively, and no cross-reaction with other porcine viruses was observed. The intra-assay and interassay coefficients of variation (CVs) were less than 8.75%, indicating good repeatability and reproducibility. To evaluate the practical value of this assay, 40 tissue samples and 70 feed samples were tested for both PCV2 and PCV3 by cdPCR and quantitative PCR (qPCR). Using multiplex cdPCR, the rates of PCV2 infection, PCV3 infection, and coinfection were 28.45%, 1.72%, and 12.93%, respectively, and using multiplex qPCR, they were 25.00%, 0.86%, and 4.31%, respectively This highly specific and sensitive multiplex cdPCR thus allows accurate simultaneous detection of PCV2 and PCV3, and it is particularly well suited for applications that require the detection of small amounts of input nucleic acid or samples with intensive processing and complex matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ouyang T, Zhang X, Liu X, Ren L (2019) Co-infection of swine with porcine circovirus type 2 and other swine viruses. Viruses 11:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Crowther RA, Berriman JA, Curran WL, Allan GM, Todd D (2003) Comparison of the structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus. J Virol 77:13036–13041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cao L, Sun W, Lu H, Tian M, Xie C, Zhao G, Han J, Wang W, Zheng M, Du R, Jin N, Qian A (2018) Genetic variation analysis of PCV1 strains isolated from Guangxi Province of China in 2015. BMC Vet Res 14:43

    Article  PubMed  PubMed Central  Google Scholar 

  4. Segalés J (2012) Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis. Virus Res 164:10–19

    Article  PubMed  Google Scholar 

  5. Phan TG, Giannitti F, Rossow S, Marthaler D, Knutson TP, Li L, Deng X, Resende T, Vannucci F, Delwart E (2016) Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virol J 13:184

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tian RB, Zhao Y, Cui JT, Zheng HH, Xu T, Hou CY, Wang ZY, Li XS, Zheng LL, Chen HY (2021) Molecular detection and phylogenetic analysis of porcine circovirus 4 in Henan and Shanxi Provinces of China. Transbound Emerg Dis 68:276–282

    Article  CAS  PubMed  Google Scholar 

  7. Luo Q, Zhou J, Tang W, Jiang P, Wan X, Ahmed W, Mohsin A, Zhuang Y, Guo M (2023) Investigation and development of transient production process for porcine circovirus type-2 (PCV2) capsid protein in HEK293F cells. Protein Expr Purif 208–209:106293

    Article  PubMed  Google Scholar 

  8. Du Q, Shi T, Wang H, Zhu C, Yang N, Tong D, Huang Y (2023) The ultrasonically treated nanoliposomes containing PCV2 DNA vaccine expressing gC1qR binding site mutant Cap is efficient in mice. Front Microbiol 13:1077026

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cao X, Huang M, Wang Y, Chen Y, Yang H, Quan F (2023) Immunogenicity analysis of PCV3 recombinant capsid protein virus-like particles and their application in antibodies detection. Int J Mol Sci 24:10377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ouyang Y, Nauwynck HJ (2023) PCV2 uptake by porcine monocytes is strain-dependent and is associated with amino acid characteristics on the capsid surface. Microbiol Spectr 11:e0380522

    Article  PubMed  Google Scholar 

  11. Dela Cruz A, Palmieri C, Azul R, Legaspi C, Lola S, Barnes TS, Parke CR, Turni C, Alawneh JI, Baluyut AS, Basinang VG, David JE, de Castro RO, Domingo R, Francisco E, Ignacio C, Lapuz EL, Mananggit MR, Retes L, Villar EC, Blackall PJ, Meers J (2021) Detection of porcine circovirus type 2 (PCV2) in the Philippines and the complexity of PCV2-associated disease diagnosis. Trop Anim Health Prod 53:371

    Article  PubMed  Google Scholar 

  12. Saporiti V, Huerta E, Correa-Fiz F, Grosse Liesner B, Duran O, Segales J, Sibila M (2020) Detection and genotyping of porcine circovirus 2 (PCV-2) and detection of porcine circovirus 3 (PCV-3) in sera from fattening pigs of different European countries. Transbound Emerg Dis 67:2521–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arruda B, Pineyro P, Derscheid R, Hause B, Byers E, Dion K, Long D, Sievers C, Tangen J, Williams T, Schwartz K (2019) PCV3-associated disease in the United States swine herd. Emerg Microbes Infect 8:684–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li L, Yuan W, Guo H, Ma Z, Song Q, Wang X, Li H (2016) Prevalence and genetic variation of porcine circovirus type 2 in Hebei, China from 2004 to 2014. Gene 586:222–227

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Y, Han H-y, Fan L, Tian R-B, Cui J-T, Li J-Y, Chen H-Y, Yang M-F, Zheng L-L (2019) Development of a TB green II-based duplex real-time fluorescence quantitative PCR assay for the simultaneous detection of porcine circovirus 2 and 3. Mol Cell Probes 45:31–36

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Qiao M, Sun M, Tian K (2018) A duplex real-time PCR assay for the simultaneous detection of porcine circovirus 2 and circovirus 3. Virologica Sinica 33:181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jia Y, Zhu Q, Xu T, Chen X, Li H, Ma M, Zhang Y, He Z, Chen H (2022) Detection and genetic characteristics of porcine circovirus type 2 and 3 in Henan province of China. Mol Cell Probes 61:101790

    Article  CAS  PubMed  Google Scholar 

  18. Tan CY, Lin CN, Ooi PT (2021) What do we know about porcine circovirus 3 (PCV3) diagnosis so far?: A review. Transbound Emerg Dis 68:2915–2935

    Article  CAS  PubMed  Google Scholar 

  19. Visuthsak W, Woonwong Y, Thanantong N, Poolperm P, Boonsoongnern A, Ratanavanichrojn N, Jirawattanapong P, Soda N, Kaminsonsakul T, Phuttapatimok S, Sukmak M (2021) PCV3 in Thailand: Molecular epidemiology and relationship with PCV2. Transbound Emerg Dis 68:2980–2989

    Article  CAS  PubMed  Google Scholar 

  20. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR–a perspective. J Mol Endocrinol 34:597–601

    Article  CAS  PubMed  Google Scholar 

  21. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011

    Article  CAS  PubMed  Google Scholar 

  22. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shi K, Chen Y, Yin Y, Long F, Feng S, Liu H, Qu S, Si H (2022) A multiplex crystal digital PCR for detection of African swine fever virus, classical swine fever virus, and porcine reproductive and respiratory syndrome virus. Front Vet Sci 9:926881

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M (2013) Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods 10:1003–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Madic J, Zocevic A, Senlis V, Fradet E, Andre B, Muller S, Dangla R, Droniou ME (2016) Three-color crystal digital PCR. Biomol Detect Quantif 10:34–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Noll L, Lu N, Porter E, Stoy C, Zheng W, Liu X, Peddireddi L, Niederwerder M, Bai J (2020) Genetic diversity and prevalence of porcine circovirus type 3 (PCV3) and type 2 (PCV2) in the Midwest of the USA during 2016–2018. Transbound Emerg Dis 67:1284–1294

    Article  CAS  PubMed  Google Scholar 

  27. Saporiti V, Huerta E, Correa-Fiz F, Grosse Liesner B, Duran O, Segalés J, Sibila M (2020) Detection and genotyping of porcine circovirus 2 (PCV-2) and detection of porcine circovirus 3 (PCV-3) in sera from fattening pigs of different European countries. Transbound Emerg Dis 67:2521–2531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du S, Xu F, Lin Y, Wang Y, Zhang Y, Su K, Li T, Li H, Song Q (2022) Detection of porcine circovirus type 2a and pasteurella multocida capsular serotype d in growing pigs suffering from respiratory disease. Vet Sci 9:528

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xu T, Zhang Y-H, Tian R-B, Hou C-Y, Li X-S, Zheng L-L, Wang L-Q, Chen H-Y (2021) Prevalence and genetic analysis of porcine circovirus type 2 (PCV2) and type 3 (PCV3) between 2018 and 2020 in central China. Infect Genet Evol 94:105016

    Article  CAS  PubMed  Google Scholar 

  30. Turlewicz-Podbielska H, Augustyniak A, Pomorska-Mol M (2022) Novel porcine circoviruses in view of lessons learned from porcine circovirus type 2-epidemiology and threat to pigs and other species. Viruses 14:261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sola C, Franzo G, Segalés J (2018) Porcine circovirus 2 (PCV-2) genotype update and proposal of a new genotyping methodology. PLoS ONE 13:e0208585

    Article  Google Scholar 

  32. Woźniak A, Miłek D, Matyba P, Stadejek T (2019) Real-Time PCR detection patterns of porcine circovirus type 2 (PCV2) in polish farms with different statuses of vaccination against PCV2. Viruses 11:1135

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huge BJ, North D, Mousseau CB, Bibby K, Dovichi NJ, Champion MM (2022) Comparison of RT-dPCR and RT-qPCR and the effects of freeze–thaw cycle and glycine release buffer for wastewater SARS-CoV-2 analysis. Sci Rep 12:20641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kojabad AA, Farzanehpour M, Galeh HEG, Dorostkar R, Jafarpour A, Bolandian M, Nodooshan MM (2021) Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol 93:4182–4197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Whale AS, Huggett JF, Tzonev S (2016) Fundamentals of multiplexing with digital PCR. Biomol Detect Quantif 10:15–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Whale AS, Cowen S, Foy CA, Huggett JF (2013) Methods for applying accurate digital PCR analysis on low copy DNA samples. PLoS ONE 8:e58177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maeda C, Ono Y, Hayashi A, Takahashi K, Taniue K, Kakisaka R, Mori M, Ishii T, Sato H, Okada T, Kawabata H, Goto T, Tamamura N, Omori Y, Takahashi K, Katanuma A, Karasaki H, Liss AS, Mizukami Y (2023) Multiplex digital PCR assay to detect multiple KRAS and GNAS mutations associated with pancreatic carcinogenesis from minimal specimen amounts. J Mol Diagn 25:367–377

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2021YFF0602800), the Key Research and Development Program of Zhejiang Province (2021C02060), and the Research Program of General Administration of Customs of China (2021HK59).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis: Jiangbing Shuai and Kexin Chen. Conceptualization: Jiangbing Shuai, Houhui Song, and Xiaofeng Zhang. Formal analysis: Kexin Chen, Zhongcai Wang, and Ruoxue Zeng. Preliminary inspection, of samples: Biao Ma and Mingzhou Zhang. The first draft of the manuscript was written by Jiangbing Shuai and Kexin Chen, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaofeng Zhang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors have no relevant financial or non-financial interests to declare.

Additional information

Handling Editor: Roman Pogranichniy

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shuai, J., Chen, K., Wang, Z. et al. A multiplex digital PCR assay for detection and quantitation of porcine circovirus type 2 and type 3. Arch Virol 169, 119 (2024). https://doi.org/10.1007/s00705-024-06044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-024-06044-0

Navigation