Skip to main content
Log in

Seasonal trends of the ABPV, KBV, and IAPV complex in Italian managed honey bee (Apis mellifera L.) colonies

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Acute bee paralysis virus (ABPV), Kashmir bee virus (KBV), and Israeli acute paralysis virus (IAPV) usually persist as covert infections in honey bee colonies. They can cause rapid bee mortality in cases of severe infection, often associated with high Varroa destructor infestation, by which they are transmitted. In various countries, these viruses have been associated with colony collapse. Despite their potential danger, these viruses are often disregarded, and little information is available on their occurrence in many countries, including Italy. In 2021, 370 apiaries representing all of the Italian regions were investigated in four different months (June, September, November, and March) for the presence of ABPV, KBV, and IAPV. IAPV was not found in any of the apiaries investigated, whereas 16.45% and 0.67% of the samples tested positive for ABPV and KBV, respectively. Most ABPV cases occurred in late summer-autumn in both northern and southern regions. We observed a scattered pattern of KBV-positive colonies that did not allow any seasonal or regional trends to be discerned. Differences observed among regions and months were potentially related to the dynamics of varroa infestation, viral genetic variations, and different climatic conditions resulting in variations in bee behaviour. This study improves our understanding of the circulation of bee viruses and will contribute to better disease prevention and preservation of bee health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The dataset supporting the findings of this study is available in the supplementary material (Supplementary Table S1).

References

  1. de Miranda JR, Cordoni G, Budge G (2010) The Acute bee paralysis virus–Kashmir bee virus–Israeli acute paralysis virus complex. J Invertebr Pathol 103:S30–S47. https://doi.org/10.1016/j.jip.2009.06.014

    Article  CAS  PubMed  Google Scholar 

  2. Genersch E, Aubert M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet Res 41:54. https://doi.org/10.1051/vetres/2010027

  3. Maori E, Lavi S, Mozes-Koch R et al (2007) Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: Evidence for diversity due to intra- and inter-species recombination. J Gen Virol 88:3428–3438. https://doi.org/10.1099/VIR.0.83284-0/CITE/REFWORKS

    Article  CAS  PubMed  Google Scholar 

  4. Ratti V, Kevan PG, Eberl HJ (2017) A Mathematical model of forager loss in honeybee colonies infested with varroa destructor and the acute bee paralysis virus. Bull Math Biol 79:1218–1253. https://doi.org/10.1007/S11538-017-0281-6

    Article  MathSciNet  PubMed  Google Scholar 

  5. Shen M, Yang X, Cox-Foster D, Cui L (2005) The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342:141–149. https://doi.org/10.1016/j.virol.2005.07.012

    Article  CAS  PubMed  Google Scholar 

  6. Di Prisco G, Pennacchio F, Caprio E et al (2011) Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J Gen Virol 92:151–155. https://doi.org/10.1099/VIR.0.023853-0/CITE/REFWORKS

    Article  PubMed  Google Scholar 

  7. Bailey L, Gibbs AJ (1964) Acute infection of bees with paralysis virus. J Insect Pathol 6:395–407

    CAS  Google Scholar 

  8. Tentcheva D, Gauthier L, Zappulla N et al (2004) Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl Environ Microbiol 70:7185–7191. https://doi.org/10.1128/AEM.70.12.7185-7191.2004

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen YP, Pettis JS, Collins A, Feldlaufer MF (2006) Prevalence and transmission of honeybee viruses. Appl Environ Microbiol 72:606–611. https://doi.org/10.1128/AEM.72.1.606-611.2006

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yue C, Schröder M, Bienefeld K, Genersch E (2006) Detection of viral sequences in semen of honeybees (Apis mellifera): evidence for vertical transmission of viruses through drones. J Invertebr Pathol 92:105–108. https://doi.org/10.1016/J.JIP.2006.03.001

    Article  CAS  PubMed  Google Scholar 

  11. Ravoet J, De Smet L, Wenseleers T, de Graaf DC (2015) Vertical transmission of honey bee viruses in a Belgian queen breeding program. BMC Vet Res 11:1–6. https://doi.org/10.1186/S12917-015-0386-9/FIGURES/2

    Article  Google Scholar 

  12. Bouuaert DC, De SL, Brunain M et al (2022) Virus prevalence in egg samples collected from naturally selected and traditionally managed honey bee colonies across Europe. Viruses 14:2442. https://doi.org/10.3390/V14112442

    Article  Google Scholar 

  13. Nguyen BK, Ribière M, VanEngelsdorp D et al (2015) Effects of honey bee virus prevalence, Varroa destructor load and queen condition on honey bee colony survival over the winter in Belgium. J Apic Res 50:195–202. https://doi.org/10.3896/IBRA.1.50.3.03

    Article  Google Scholar 

  14. Allen MF, Ball BV, White RF, Antoniw JF (1986) The detection of acute paralysis virus in Varroa jacobsoni by the use of a simple indirect ELISA. J Apic Res 25:100–105. https://doi.org/10.1080/00218839.1986.11100700

    Article  Google Scholar 

  15. Ball BV, Allen MF (1988) The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni. Ann Appl Biol 113:237–244. https://doi.org/10.1111/j.1744-7348.1988.tb03300.x

    Article  Google Scholar 

  16. Bakonyi T, Farkas R, Szendröi A et al (2002) Detection of acute bee paralysis virus by RT-PCR in honey bee and Varroa destructor field samples: rapid screening of representative Hungarian apiaries. Apidologie 33:63–74. https://doi.org/10.1051/APIDO:2001004

    Article  CAS  Google Scholar 

  17. Békési L, Ball BV, Dobos-Kovács M et al (1999) Occurrence of acute paralysis virus of the honey bee (Apis mellifera) in a Hungarian apiary infested with the parasitic mite Varroa jacobsoni. Acta Vet Hung 47:319–324. https://doi.org/10.1556/AVET.47.1999.3.5

    Article  PubMed  Google Scholar 

  18. Bailey L, Woods RD (1974) Three previously undescribed viruses from the honey bee. J Gen Virol 25:175–186. https://doi.org/10.1099/0022-1317-25-2-175

    Article  CAS  PubMed  Google Scholar 

  19. Allen MF, Ball BV (1995) Characterisation and serological relationships of strains of Kashmir bee virus. Ann Appl Biol 126:471–484. https://doi.org/10.1111/j.1744-7348.1995.tb05382.x

    Article  Google Scholar 

  20. Todd JH, De Miranda JR, Ball BV (2007) Incidence and molecular characterization of viruses found in dying New Zealand honey bee (Apis mellifera ) colonies infested with Varroa destructor. Apidologie 38:354–367. https://doi.org/10.1051/apido:2007021

    Article  CAS  Google Scholar 

  21. Bailey L, Carpenter JM, Woods RD (1979) Egypt bee virus and Australian isolates of Kashmir bee virus. J Gen Virol 43:641–647. https://doi.org/10.1099/0022-1317-43-3-641/CITE/REFWORKS

    Article  CAS  Google Scholar 

  22. Shen M, Cui L, Ostiguy N, Cox-Foster D (2005) Intricate transmission routes and interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honeybee host and the parasitic varroa mite. J Gen Virol 86:2281–2289

    Article  CAS  PubMed  Google Scholar 

  23. Maori E, Paldi N, Shafir S et al (2009) IAPV, a bee-affecting virus associated with Colony Collapse Disorder can be silenced by dsRNA ingestion. Insect Mol Biol 18:55–60. https://doi.org/10.1111/J.1365-2583.2009.00847.X

    Article  CAS  PubMed  Google Scholar 

  24. Cox-Foster DL, Conlan S, Holmes EC, et al (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science (80- ) 318:283–287. https://doi.org/10.1126/SCIENCE.1146498/SUPPL_FILE/COX-FOSTER_SOM.PDF

  25. Genersch E (2010) Honey bee pathology: current threats to honey bees and beekeeping. Appl Microbiol Biotechnol 87:87–97. https://doi.org/10.1007/S00253-010-2573-8

    Article  CAS  PubMed  Google Scholar 

  26. Kalayci G, Cagirgan AA, Kaplan M et al (2020) The role of viral and parasitic pathogens affected by colony losses in Turkish apiaries. Kafkas Univ Vet Fak Derg 26:671–677. https://doi.org/10.9775/kvfd.2020.24154

    Article  Google Scholar 

  27. Berényi O, Bakonyi T, Derakhshifar I et al (2006) Occurrence of six honeybee viruses in diseased Austrian apiaries. Appl Environ Microbiol 72:2414–2420. https://doi.org/10.1128/AEM.72.4.2414-2420.2006

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cirkovic D, Stevanovic J, Glavinic U et al (2018) Honey bee viruses in Serbian colonies of different strength. PeerJ 2018:e5887. https://doi.org/10.7717/PEERJ.5887/SUPP-5

    Article  Google Scholar 

  29. Morawetz L, Köglberger H, Griesbacher A et al (2019) Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PLoS One 14:0219293. https://doi.org/10.1371/JOURNAL.PONE.0219293

    Article  Google Scholar 

  30. Mráz P, Hýbl M, Kopecký M et al (2021) Screening of honey bee pathogens in the Czech Republic and their prevalence in various habitats. Insects 12:1051. https://doi.org/10.3390/INSECTS12121051

    Article  PubMed  PubMed Central  Google Scholar 

  31. Forgách P, Bakonyi T, Tapaszti Z et al (2008) Prevalence of pathogenic bee viruses in Hungarian apiaries: situation before joining the European Union. J Invertebr Pathol 98:235–238. https://doi.org/10.1016/J.JIP.2007.11.002

    Article  PubMed  Google Scholar 

  32. Antúnez K, D’Alessandro B, Corbella E, Zunino P (2005) Detection of Chronic bee paralysis virus and Acute bee paralysis virus in Uruguayan honeybees. J Invertebr Pathol 90:69–72. https://doi.org/10.1016/J.JIP.2005.07.001

    Article  PubMed  Google Scholar 

  33. Teixeira EW, Chen Y, Message D et al (2008) Virus infections in Brazilian honey bees. J Invertebr Pathol 99:117–119. https://doi.org/10.1016/J.JIP.2008.03.014

    Article  CAS  PubMed  Google Scholar 

  34. Rodríguez M, Vargas M, Antúnez K et al (2014) Prevalence and phylogenetic analysis of honey bee viruses in the Biobío Region of Chile and their association with other honey bee pathogens. Chil J Agric Res 74:170–177. https://doi.org/10.4067/S0718-58392014000200007

    Article  Google Scholar 

  35. Molineri A, Giacobino A, Pacini A et al (2017) Risk factors for the presence of Deformed wing virus and Acute bee paralysis virus under temperate and subtropical climate in Argentinian bee colonies. Prev Vet Med 140:106–115. https://doi.org/10.1016/J.PREVETMED.2017.02.019

    Article  PubMed  Google Scholar 

  36. Desai SD, Currie RW (2015) Genetic diversity within honey bee colonies affects pathogen load and relative virus levels in honey bees, Apis mellifera L. Behav Ecol Sociobiol 69:1527–1541. https://doi.org/10.1007/s00265-015-1965-2

    Article  Google Scholar 

  37. Lester PJ, Felden A, Baty JW et al (2022) Viral communities in the parasite Varroa destructor and in colonies of their honey bee host (Apis mellifera) in New Zealand. Sci Rep 12:1–13. https://doi.org/10.1038/s41598-022-12888-w

    Article  CAS  Google Scholar 

  38. Roberts JMKJ, Anderson DDL, Durr PAP (2017) Absence of deformed wing virus and Varroa destructor in Australia provides unique perspectives on honeybee viral landscapes and colony losses. Sci Rep 7:6925. https://doi.org/10.1038/s41598-017-07290-w

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Formato G, Giacomelli A, Olivia M, et al (2015) First detection of Israeli acute paralysis virus (IAPV) in Italy 50:176–177. https://doi.org/10.3896/IBRA.1.50.2.12

  40. Cersini A, Bellucci V, Lucci S et al (2013) First isolation of Kashmir bee virus (KBV) in Italy. J Apic Res 52:54–55. https://doi.org/10.3896/IBRA.1.52.2.08

    Article  Google Scholar 

  41. Porrini C, Mutinelli F, Bortolotti L et al (2016) The status of honey bee health in italy: results from the nationwide bee monitoring network. PLoS One 11:e0155411. https://doi.org/10.1371/journal.pone.0155411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bordin F, Zulian L, Granato A, et al (2022) Presence of known and emerging honey bee pathogens in apiaries of veneto region (Northeast of Italy) during Spring 2020 and 2021. Appl Sci 12: 2134. https://doi.org/10.3390/APP12042134

  43. Cilia G, Tafi E, Zavatta L et al (2022) The epidemiological situation of the managed honey bee (Apis mellifera) colonies in the Italian Region Emilia-Romagna. Vet Sci 9:437

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yañez O, Piot N, Dalmon A et al (2020) Bee viruses: routes of infection in hymenoptera. Front Microbiol 11:943. https://doi.org/10.3389/fmicb.2020.00943

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nanetti A, Bortolotti L, Cilia G (2021) Pathogens spillover from honey bees to other arthropods. Pathog 10:1044. https://doi.org/10.3390/PATHOGENS10081044

    Article  CAS  Google Scholar 

  46. Cilia G, Flaminio S, Zavatta L et al (2022) Occurrence of honey bee (Apis mellifera L.) pathogens in wild pollinators in northern Italy. Front Cell Infect Microbiol 12:7489. https://doi.org/10.3389/FCIMB.2022.907489

    Article  Google Scholar 

  47. Power K, Altamura G, Martano M, Maiolino P (2022) Detection of honeybee viruses in vespa orientalis. Front Cell Infect Microbiol. https://doi.org/10.3389/FCIMB.2022.896932

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mazzei M, Cilia G, Forzan M et al (2019) Detection of replicative Kashmir bee virus and black queen cell virus in asian hornet vespa velutina (Lepelieter 1836) in Italy. Sci Rep 9:10091. https://doi.org/10.1038/s41598-019-46565-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giovanetti M, Bortolotti L (2021) Report on a project: BeeNet at the start. Bull Insectol 284

  50. Cilia G, Garrido C, Bonetto M et al (2020) Effect of Api-Bioxal® and ApiHerb® Treatments against Nosema ceranae Infection in Apis mellifera Investigated by Two qPCR Methods. Vet Sci 7:125. https://doi.org/10.3390/vetsci7030125

    Article  PubMed  PubMed Central  Google Scholar 

  51. Winston ML (1991) The biology of the honey bee

  52. Botías C, Martín-Hernández R, Días J et al (2012) The effect of induced queen replacement on Nosema spp. infection in honey bee (Apis mellifera iberiensis) colonies. Environ Microbiol 14:845–859. https://doi.org/10.1111/J.1462-2920.2011.02647.X

    Article  PubMed  Google Scholar 

  53. Nanetti A, Ellis JD, Cardaio I, Cilia G (2021) Detection of lotmaria passim, crithidia mellificae and replicative forms of deformed wing virus and Kashmir bee virus in the small hive beetle (Aethina tumida). Pathogens 10:372. https://doi.org/10.3390/pathogens10030372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cilia G, Luchetti G, Nanetti A (2022) Polymorphism of 16s rRNA Gene: any effect on the Biomolecular Quantitation of the Honey Bee (Apis mellifera L., 1758) pathogen nosema ceranae? Appl Sci 12:422. https://doi.org/10.3390/APP12010422

    Article  CAS  Google Scholar 

  55. Cilia G, Zavatta L, Ranalli R, et al (2021) Replicative Deformed Wing Virus found in the head of adults from symptomatic commercial bumblebee (Bombus terrestris) colonies. Vet Sci 8:117. https://doi.org/10.3390/vetsci8070117

  56. Nanetti A, Ugolini L, Cilia G et al (2021) Seed meals from Brassica nigra and Eruca sativa control artificial nosema ceranae infections in Apis mellifera. Microorganisms 9:949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chantawannakul P, Ward L, Boonham N, Brown M (2006) A scientific note on the detection of honeybee viruses using real-time PCR (TaqMan) in Varroa mites collected from a Thai honeybee (Apis mellifera) apiary. J Invertebr Pathol 91:69–73. https://doi.org/10.1016/j.jip.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  58. Fox J (2022) car: Companion to applied regression. https://cran.r-project.org/web/packages/car/index.html

  59. Lüdecke D (2022) sjPlot: data visualization for statistics in social science. https://cran.r-project.org/web/packages/sjPlot/index.html

  60. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  61. Ogle DH, Doll JC, Wheeler AP, Dinno A (2023) Simple fisheries stock assessment methods. https://cran.r-project.org/web/packages/FSA/index.html

  62. Blanchard P, Schurr F, Celle O et al (2008) First detection of Israeli acute paralysis virus (IAPV) in France, a dicistrovirus affecting honeybees (Apis mellifera). J Invertebr Pathol 99:348–350. https://doi.org/10.1016/J.JIP.2008.07.006

    Article  PubMed  Google Scholar 

  63. Antúnez K, Anido M, Garrido-Bailón E et al (2012) Low prevalence of honeybee viruses in Spain during 2006 and 2007. Res Vet Sci 93:1441–1445. https://doi.org/10.1016/J.RVSC.2012.03.006

    Article  PubMed  Google Scholar 

  64. Pohorecka K, Bober A, Skubida M, Zdańska D (2011) Epizootic status of apiaries with massive losses of bee colonies. J Apic Sci 137

  65. Hou C, Rivkin H, Slabezki Y, Chejanovsky N (2014) Dynamics of the presence of israeli acute paralysis virus in honey bee colonies with colony collapse disorder. Viruses 6:2012–2027. https://doi.org/10.3390/v6052012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen YP, Pettis JS, Corona M et al (2014) Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health. PLoS Pathog 10:e1004261. https://doi.org/10.1371/journal.ppat.1004261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Foddai D, Bonato L, Pereira LA, Minelli A (2003) Phylogeny and systematics of the Arrupinae (Chilopoda: Geophilomorpha: Mecistocephalidae) with the description of a new dwarfed species. Taylor & Francis Group, Boston

    Book  Google Scholar 

  68. Genersch E, Von Der Ohe W, Kaatz H et al (2010) The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41:332–352. https://doi.org/10.1051/APIDO/2010014

    Article  CAS  Google Scholar 

  69. Tlak Gajger I, Kolodziejek J, Bakonyi T, Nowotny N (2014) Prevalence and distribution patterns of seven different honeybee viruses in diseased colonies: a case study from Croatia. Apidologie 45:701–706

    Article  CAS  Google Scholar 

  70. Toplak I, Cerne D, Ciglenecki UJ et al (2012) Detection of six honeybee viruses in clinically affected colonies of carniolan gray bee (Apis mellifera carnica). Slov Vet Res 49:89–96

    Google Scholar 

  71. Nielsen SL, Nicolaisen M, Kryger P (2008) Incidence of acute bee paralysis virus, black queen cell virus, chronic bee paralysis virus, deformed wing virus, Kashmir bee virus and sacbrood virus in honey bees (Apis mellifera) in Denmark. Apidologie 39:310–314. https://doi.org/10.1051/APIDO:2008007

    Article  CAS  Google Scholar 

  72. Ryba S, Titera D, Schodelbauerova-Traxmandlova I, Kindlmann P (2012) Prevalence of honeybee viruses in the Czech Republic and coinfections with other honeybee disease. Biologia (Bratisl) 67:590–595. https://doi.org/10.2478/S11756-012-0038-5/MACHINEREADABLECITATION/RIS

    Article  Google Scholar 

  73. Ward L, Waite R, Boonham N et al (2007) First detection of Kashmir bee virus in the UK using real-time PCR. Apidologie 38:181–190. https://doi.org/10.1051/apido:2006072

    Article  CAS  Google Scholar 

  74. Meana A, Llorens-Picher M, Euba A et al (2017) Risk factors associated with honey bee colony loss in apiaries in Galicia. NW Spain. Spanish J Agric Res 15:e501. https://doi.org/10.5424/SJAR/2017151-9652

    Article  Google Scholar 

  75. Siede R, Derakhshifar I, Otten C et al (2005) Prevalence of Kashmir bee virus in central Europe. J Apic Res 44:129–129. https://doi.org/10.1080/00218839.2005.11101164

    Article  Google Scholar 

  76. Blanchard P, Ribière M, Celle O et al (2007) Evaluation of a real-time two-step RT-PCR assay for quantitation of Chronic bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life stages of a symptomatic colony. J Virol Methods 141:7–13. https://doi.org/10.1016/J.JVIROMET.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  77. Mockel N, Gisder S, Genersch E (2011) Horizontal transmission of deformed wing virus: pathological consequences in adult bees (Apis mellifera) depend on the transmission route. J Gen Virol 92:370–377. https://doi.org/10.1099/vir.0.025940-0

    Article  CAS  PubMed  Google Scholar 

  78. Chen YP, Siede R (2007) Honey bee viruses. Adv Virus Res

  79. Dalmon A, Peruzzi M, Le Conte Y et al (2019) Temperature-driven changes in viral loads in the honey bee Apis mellifera. J Invertebr Pathol 160:87–94. https://doi.org/10.1016/j.jip.2018.12.005

    Article  PubMed  Google Scholar 

  80. Piot N, Schweiger O, Meeus I et al (2022) Honey bees and climate explain viral prevalence in wild bee communities on a continental scale. Sci Rep 12:1904. https://doi.org/10.1038/s41598-022-05603-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Giacobino A, Molineri AI, Pacini A et al (2016) Varroa destructor and viruses association in honey bee colonies under different climatic conditions. Environ Microbiol Rep 8:407–412. https://doi.org/10.1111/1758-2229.12410

    Article  PubMed  Google Scholar 

  82. Antúnez K, Anido M, Branchiccela B et al (2015) Seasonal variation of honeybee pathogens and its association with pollen diversity in uruguay. Microb Ecol 70:522–533. https://doi.org/10.1007/S00248-015-0594-7/FIGURES/7

    Article  ADS  PubMed  Google Scholar 

  83. Beaurepaire A, Piot N, Doublet V et al (2020) Diversity and global distribution of viruses of the western honey bee Apis mellifera. Insects 11:239

    Article  PubMed  PubMed Central  Google Scholar 

  84. Le Conte Y, Navajas M (2008) Climate change: impact on honey bee populations and diseases. OIE Rev Sci Tech 27:485–510. https://doi.org/10.20506/rst.27.2.1819

  85. Ricigliano VA, Mott BM, Floyd AS et al (2018) Honey bees overwintering in a southern climate: longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci Rep. https://doi.org/10.1038/S41598-018-28732-Z

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lodesani M, Costa C, Besana A, et al (2015) Impact of control strategies for Varroa destructor on colony survival and health in northern and central regions of Italy 53:155–164. https://doi.org/10.3896/IBRA153117

  87. Bailey L, Ball BV, Perry JN (1983) Honeybee paralysis: Its natural spread and its diminished incidence in England and Wales. J Apic Res 22:191–195. https://doi.org/10.1080/00218839.1983.11100586

    Article  Google Scholar 

  88. Siede R, Büchler R (2004) First detection of Kashmir bee virus in Hesse, Germany. Berl Munch Tierarztl Wochenschr 117:12–15

    CAS  PubMed  Google Scholar 

  89. Locke B, Forsgren E, Fries I, de Miranda JR (2012) Acaricide treatment affects viral dynamics in varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl Environ Microbiol 78:227. https://doi.org/10.1128/AEM.06094-11

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Boncristiani H, Underwood R, Schwarz R et al (2012) Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J Insect Physiol 58:613–620. https://doi.org/10.1016/J.JINSPHYS.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  91. Le Conte Y, Ellis M, Ritter W (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41:353–363. https://doi.org/10.1051/APIDO/2010017

    Article  Google Scholar 

  92. Bellucci V, Lucci S, Bianco P, et al (2019) Monitoring honey bee health in five natural protected areas in Italy. Vet Ital 55:15–25. https://doi.org/10.12834/VETIT.1209.6739.4

  93. Erez T, Bonda E, Kahanov P et al (2022) Multiple benefits of breeding honey bees for hygienic behavior. J Invertebr Pathol 193:107788. https://doi.org/10.1016/J.JIP.2022.107788

    Article  PubMed  Google Scholar 

  94. Traynor KS, Mondet F, de Miranda JR et al (2020) Varroa destructor: a complex parasite, crippling honey bees worldwide. Trends Parasitol 36:592–606. https://doi.org/10.1016/J.PT.2020.04.004

    Article  CAS  PubMed  Google Scholar 

  95. Mendoza Y, Tomasco IH, Antúnez K et al (2020) Unraveling honey bee-varroa destructor interaction: multiple factors involved in differential resistance between two uruguayan populations. Vet Sci 7:116. https://doi.org/10.3390/vetsci7030116

    Article  PubMed  PubMed Central  Google Scholar 

  96. de Jongh EJ, Harper SL, Yamamoto SS et al (2022) One health, one hive: a scoping review of honey bees, climate change, pollutants, and antimicrobial resistance. PLoS One 17:e0242393. https://doi.org/10.1371/JOURNAL.PONE.0242393

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wilfert L, Brown MJF, Doublet V (2021) OneHealth implications of infectious diseases of wild and managed bees. J Invertebr Pathol 186:107506. https://doi.org/10.1016/J.JIP.2020.107506

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Valeria Caringi, Irene Guerra, Sergio Albertazzi, and Vittorio Capano (CREA Research Centre for Agriculture and Environment) for their effort in the sampling activity.

Funding

This study was supported by the project BeeNet (Italian National Fund under FEASR 2014-2020) from the Italian Ministry of Agriculture and Food Sovereignty and Forestry (MASAF).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Giovanni Cilia and Antonio Nanetti. Sampling: Amanda Dettori. Methodology: Giovanni Cilia. Formal analysis: Giovanni Cilia and Elena Tafi. Investigation: Giovanni Cilia, Elena Tafi, and Laura Zavatta. Data analysis: Giovanni Cilia, Elena Tafi, Laura Zavatta, and Antonio Nanetti. Writing – original draft preparation: Giovanni Cilia, Elena Tafi, and Laura Zavatta. Writing – review and editing: Giovanni Cilia, Elena Tafi, Laura Zavatta, Amanda Dettori, Laura Bortolotti, and Antonio Nanetti. Supervision: Antonio Nanetti. Funding acquisition: Laura Bortolotti. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Elena Tafi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The funders had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Additional information

Handling Editor: T. K. Frey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cilia, G., Tafi, E., Zavatta, L. et al. Seasonal trends of the ABPV, KBV, and IAPV complex in Italian managed honey bee (Apis mellifera L.) colonies. Arch Virol 169, 43 (2024). https://doi.org/10.1007/s00705-024-05967-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-024-05967-y

Navigation