Skip to main content

Advertisement

Log in

Transcriptome signatures of host tissue infected with African swine fever virus reveal differential expression of associated oncogenes

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

African swine fever (ASF) has emerged as a threat to swine production worldwide. Evasion of host immunity by ASF virus (ASFV) is well understood. However, the role of ASFV in triggering oncogenesis is still unclear. In the present study, ASFV-infected kidney tissue samples were subjected to Illumina-based transcriptome analysis. A total of 2463 upregulated and 825 downregulated genes were differentially expressed (p < 0.05). A literature review revealed that the majority of the differentially expressed host genes were key molecules in signaling pathways involved in oncogenesis. Bioinformatic analysis indicated the activation of certain oncogenic KEGG pathways, including basal cell carcinoma, breast cancer, transcriptional deregulation in cancer, and hepatocellular carcinoma. Analysis of host-virus interactions revealed that the upregulated oncogenic RELA (p65 transcription factor) protein of Sus scrofa can interact with the A238L (hypothetical protein of unknown function) of ASFV. Differential expression of oncogenes was confirmed by qRT-PCR, using the H3 histone family 3A gene (H3F3A) as an internal control to confirm the RNA-Seq data. The levels of gene expression indicated by qRT-PCR matched closely to those determined through RNA-Seq. These findings open up new possibilities for investigation of the mechanisms underlying ASFV infection and offer insights into the dynamic interaction between viral infection and oncogenic processes. However, as these investigations were conducted on pigs that died from natural ASFV infection, the role of ASFV in oncogenesis still needs to be investigated in controlled experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support this study will be shared upon reasonable request to the corresponding author.

References

  1. Aguero M, Fernandez J, Romero L, Sanchez MC, Arias M, Sanchez JMV (2003) Highly sensitive PCR assay for routine diagnosis of African swine fever virus in clinical samples. J Clin Microbiol 41:4431–4434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akter KA, Mansour MA, Hyodo T, Senga T (2017) FAM98A associates with DDX1-C14orf166-FAM98B in a novel complex involved in colorectal cancer progression. Int J Biochem Cell Biol 84:1–13

    Article  CAS  PubMed  Google Scholar 

  3. Ando T, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Kurehara H et al (2006) Expression of ACP6 is an independent prognostic factor for poor survival in patients with esophageal squamous cell carcinoma. Oncol Rep 15(6):1551–1555

    CAS  PubMed  Google Scholar 

  4. Avagyan HR, Hakobyan SA, Poghosyan AA, Bayramyan NV, Arzumanyan HH, Abroyan LO, Avetisyan AS, Hakobyan LA, Karalova EM, Karalyan ZA (2022) African swine fever virus manipulates the cell cycle of g0-infected cells to access cellular nucleotides. Viruses 14(8):1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bancroft JD, Gamble M (eds) (2008) Theory and practice of histological techniques. Elsevier Health Sciences

    Google Scholar 

  6. Baylis SA, Banham AH, Vydelingum S, Dixon LK, Smith GL (1993) African swine fever virus encodes a serine protein kinase which is packaged into virions. J Virol 67(8):4549–4556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bian H, Zhou Y, Zhou D, Zhang Y, Shang D, Qi J (2019) The latest progress on miR-374 and its functional implications in physiological and pathological processes. J Cell Mol Med 23(5):3063–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buchholz M, Honstein T, Kirchhoff S, Kreider R, Schmidt H, Sipos B et al (2015) A multistep high-content screening approach to identify novel functionally relevant target genes in pancreatic cancer. PLoS ONE 10:e122946

    Article  Google Scholar 

  9. Chatterji P, Rustgi AK (2018) RNA binding proteins in intestinal epithelial biology and colorectal cancer. Trends Mol Med 24(5):490–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chryplewicz A, Tienda SM, Nahotko DA, Peters PN, Lengyel E, Eckert MA (2019) Mutant p53 regulates LPA signaling through lysophosphatidic acid phosphatase type 6. Sci Rep 9(1):5195

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Culling C, Reid P, Clay M, Dunn WJ (1974) The histochemical demonstration of O-acylated sialic acid in gastrointestinal mucins their association with the potassium hydroxide-periodic acid-schiff effect. J Histochem Cytochem 22:826–831

    Article  CAS  PubMed  Google Scholar 

  12. Deb R, Sonowal J, Sengar GS, Pegu SR, Praharaj MR, Malla WA, Singh I, Yadav AK, Rajkhowa S, Das PJ, Bharati J, Paul S, Gupta VK (2022) Porcine Circovirus type 2 infected myocardial tissue transcriptome signature. Gene 20(836):146670. https://doi.org/10.1016/j.gene.2022.146670

    Article  CAS  Google Scholar 

  13. Dixon LK, Islam M, Nash R, Reis AL (2019) African swine fever virus evasion of host defences. Virus Res 266:25–33

    Article  CAS  PubMed  Google Scholar 

  14. Enjuanes L, Cubero I, Vinuela E (1977) Sensitivity of macrophages from different species to African swine fever (ASF) virus. J Gen Virol 34:455–463

    Article  CAS  PubMed  Google Scholar 

  15. Fraczyk M, Wozniakowski G, Kowalczyk A, Bocian L, Kozak E, Niemczuk K, Pejsak Z (2016) Evolution of African swine fever virus genes related to evasion of host immune response. Vet Microbiol 193:133–144

    Article  CAS  PubMed  Google Scholar 

  16. Gao L, Xiong DD, Yang X, Li JD, He RQ, Huang ZG, Lai ZF, Liu LM, Luo JY, Du XF, Zeng JH (2022) The expression characteristics and clinical significance of ACP6, a potential target of nitidine chloride, in hepatocellular carcinoma. BMC Cancer 22(1):1–14

    Article  CAS  Google Scholar 

  17. Garcia-Belmonte R, Perez-Nunez D, Pittau M, Richt JA, Revilla Y (2019) African swine fever virus Armenia/07 virulent strain controls interferon beta production through the cGAS-STING pathway. J Virol 93:e02298-e2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Golipour A, Myers D, Seagroves T, Murphy D, Evan GI, Donoghue DJ, Moorehead RA, Porter LA (2008) The Spy1/RINGO family represents a novel mechanism regulating mammary growth and tumorigenesis. Can Res 68(10):3591–3600

    Article  CAS  Google Scholar 

  19. Granja AG, Nogal ML, Hurtado C, Salas J, Salas ML, Carrascosa AL, Revilla Y (2004) Modulation of p53 cellular function and cell death by African swine fever virus. J Virol 78(13):7165–7174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He X, Gan F, Lin Y, Liu G, Lin Y, Chen D (2022) MAIP1-related tumor immune infiltration: as a potential prognostic biomarker for esophageal cancer. J Immunol Res 2022:1–12

    CAS  Google Scholar 

  21. Horie C, Zhu C, Yamaguchi K, Nakagawa S, Isobe Y, Takane K, Ikenoue T, Ohta Y, Tanaka Y, Aikou S, Tsurita G (2022) Motile sperm domain containing 1 is upregulated by the Wnt/β-catenin signaling pathway in colorectal cancer. Oncol Lett 24(2):1–8

    Article  Google Scholar 

  22. Huang Y, Fang C, Shi JW, Wen Y, Liu D (2017) Identification of hMex-3A and its effect on human bladder cancer cell proliferation. Oncotarget 8(37):61215

    Article  PubMed  PubMed Central  Google Scholar 

  23. ICAR Annual Report (2022-23) Indian Council of Agricultural Research, Department of Agricultural Research and Education, Ministry of Agriculture& Farmers Welfare, Government of India. https://icar.org.in/sites/default/files/ICAR-Annual-Report-2022-23

  24. Jasinski-Bergner S, Steven A, Seliger B (2020) The role of the RNA-binding protein family MEX-3 in tumorigenesis. Int J Mol Sci 21(15):5209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang H, Zhang X, Luo J, Dong C, Xue J, Wei W, Chen J, Zhou J, Gao Y, Yang C (2012) Knockdown of hMex-3A by small RNA interference suppresses cell proliferation and migration in human gastric cancer cells. Mol Med Rep 6(3):575–580

    Article  CAS  PubMed  Google Scholar 

  26. Jie Y, Liu Y, Chang H, Zhao G (2017) Molecular characterization, sequence analysis and tissue expression of a porcine gene–MOSPD2. Biotechnol Biotechnol Equip 31(1):99–104

    Article  CAS  Google Scholar 

  27. King DW, Steinmetz R, Wagoner HA, Hannon TS, Chen LY, Eugster EA et al (2003) Differential expression of GRK isoforms in nonmalignant and malignant human granulosa cells. Endocrine 22:135–142

    Article  CAS  PubMed  Google Scholar 

  28. König T, Tröder SE, Bakka K, Korwitz A, Richter-Dennerlein R, Lampe PA, Patron M, Mühlmeister M, Guerrero-Castillo S, Brandt U, Decker T (2016) The m-AAA protease associated with neurodegeneration limits MCU activity in mitochondria. Mol Cell 64(1):148–162

    Article  PubMed  Google Scholar 

  29. Krebs DL, Hilton DJ (2001) SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19:378–387

    Article  CAS  PubMed  Google Scholar 

  30. Lang L, Teng Y (2019) Fibroblast growth factor receptor 4 targeting in cancer: new insights into mechanisms and therapeutic strategies. Cells 8:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li W, Ai N, Wang S, Bhattacharya N, Vrbanac V, Collins M et al (2014) GRK3 is essential for metastatic cells and promotes prostate tumor progression. Proc Natl Acad Sci USA 111:1521–1526

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Y, Zhao JJ, Li N, Shi Z, Cheng D, Zhu QH, Tu C, Tong GZ, Qiu HJ (2007) A multiplex nested RT-PCR for the detection and differentiation of wild-type viruses from C-strain vaccine of classical swine fever virus. J Virol Methods 143(1):16–22

    Article  CAS  PubMed  Google Scholar 

  33. Lim EC, Lim SW, Tan KJ, Sathiya M, Cheng WH, Lai KS, Loh JY, Yap WS (2022) In-Silico analysis of deleterious SNPs of FGF4 gene and their impacts on protein structure function and bladder cancer prognosis. Life 12(7):1018

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin J, Deng Z, Tanikawa C, Shuin T, Miki T, Matsuda K, Nakamura Y (2014) Downregulation of the tumor suppressor HSPB7, involved in the p53 pathway, in renal cell carcinoma by hypermethylation. Int J Oncol 44(5):1490–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu GQ, Huang HX, Han DD, Cao LH, Ji GQ, Yu L (2013) A preliminary study on human mitochondrial protein coding gene C 2ORF47 in cell proliferation and apoptosis. J Fudan Univ (Natl Sci) 52(4):452–459

    CAS  Google Scholar 

  36. Liu X, Zhang W, Geng D, He J, Zhao Y, Yu L (2014) Clinical significance of fibroblast growth factor receptor-3 mutations in bladder cancer: a systematic review and meta-analysis. Genet Mol Res 13:1109–1120

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, An S, Ward R, Yang Y, Guo XX, Li W, Xu TR (2016) G protein-coupled receptors as promising cancer targets. Cancer Lett 376(2):226–239

    Article  CAS  PubMed  Google Scholar 

  38. Liu Y, Zhang B, Kuang H, Korakavi G, Lu LY, Yu X (2016) Zinc finger protein 618 regulates the function of UHRF2 (ubiquitin-like with PHD and ring finger domains 2) as a specific 5-hydroxymethylcytosine reader. J Biol Chem 291(26):13679–13688. https://doi.org/10.1074/jbc.M116.717314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Xia J, McKay J, Tsavachidis S, Xiao X, Spitz MR, Cheng C, Byun J, Hong W, Li Y, Zhu D (2021) Rare deleterious germline variants and risk of lung cancer. NPJ Precis Oncol 5(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma Y, Han CC, Huang Q, Sun WY, Wei W (2016) GRK2 overexpression inhibits IGF1-induced proliferation and migration of human hepatocellular carcinoma cells by downregulating EGR1. Oncol Rep 35:3068–3074

    Article  CAS  PubMed  Google Scholar 

  41. Mallela K, Shivananda S, Gopinath KS, Kumar A (2021) Oncogenic role of MiR-130a in oral squamous cell carcinoma. Sci Rep 11(1):1–13

    Article  Google Scholar 

  42. Martens N, Uzan G, Wery M, Hooqhe R, Hooqhe-Peters EL, Gertler A (2005) Suppressor of cytokine signaling 7 inhibits prolactin, growth hormone, and leptin signaling by interacting with STAT5 or STAT3 and attenuating their nuclear translocation. J Biol Chem 280:13817–13823

    Article  CAS  PubMed  Google Scholar 

  43. Mazur-Panasiuk N, Zmudzki J, Wozniakowski G (2019) African swine fever virus—persistence in different environmental conditions and the possibility of its indirect transmission. J Vet Res 63:303–310

    Article  PubMed  PubMed Central  Google Scholar 

  44. Metaye T, Levillain P, Kraimps JL, Perdrisot R (2008) Immunohistochemical detection, regulation and antiproliferative function of G-protein-coupled receptor kinase 2 in thyroid carcinomas. J Endocrinol 198:101–110. https://doi.org/10.1677/JOE-07-0562

    Article  CAS  PubMed  Google Scholar 

  45. Nogal ML, Gonzalez de Buitrago G, Rodriguez C, Cubelos B, Carrascosa AL, Salas ML, Revilla Y (2001) African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol 75:2535–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Noguchi S, Yamada N, Kumazaki M, Yasui Y, Iwasaki J, Naito S, Akao Y (2013) socs7, a target gene of microRNA-145, regulates interferon-β induction through STAT3 nuclear translocation in bladder cancer cells. Cell Death Dis 4(2):e482–e482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nogues L, Reglero C, Rivas V, Salcedo A, Lafarga V, Neves M et al (2016) G protein-coupled receptor kinase 2 (GRK2) promotes breast tumorigenesis through a HDAC6-Pin1 axis. EBioMedicine 13:132–145

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pegu SR, Deb R, Das PJ, Sengar GS, Yadav AK, Rajkhowa S, Paul S, Gupta VK (2022) Development of multiplex PCR assay for simultaneous detection of African swine fever, porcine circo and porcine parvo viral infection from clinical samples. Anim Biotechnol 34:1–8

    Google Scholar 

  49. Pichler G, Wolf P, Schmidt CS, Meilinger D, Schneider K, Frauer C, Fellinger K, Rottach A, Leonhardt H (2011) Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways. J Cell Biochem 112:2585–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pikalo J, Zani L, Huehr J, Beer M, Biome S (2019) Pathogenesis of African swine fever in domestic pigs and European wild boar—lessons learned from recent animal trials. Virus Res 271:197614

    Article  CAS  PubMed  Google Scholar 

  51. Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  CAS  PubMed  Google Scholar 

  52. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389:300–305

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Qiu Y, Meng M, Cao C, Zhang J, Cheng X, Huang Y, Cao H, Li Y, Tian D, Huang Y, Peng L (2022) RNA-binding protein MEX3A controls G1/S transition via regulating the RB/E2F pathway in clear cell renal cell carcinoma. Mol Ther Nucleic Acids 27:241–255

    Article  CAS  PubMed  Google Scholar 

  54. Raghuwanshi SK, Smith N, Rivers EJ, Thomas AJ, Sutton N, Hu Y et al (2013) G protein-coupled receptor kinase 6 deficiency promotes angiogenesis, tumor progression, and metastasis. J Immunol 190:5329–5336

    Article  CAS  PubMed  Google Scholar 

  55. Ramachandran C, Rodriguez S, Ramachandran R, Nair PR, Fonseca H, Khatib Z, Escalon E, Melnick SJ (2005) Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res 25(5):3293–3302

    CAS  PubMed  Google Scholar 

  56. Ramirez-Medina E, Vuono E, Pruitt S, Rai A, Espinoza N, Valladares A, Spinard E, Silva E, Velazquez-Salinas L, Gladue DP, Borca MV (2022) ASFV gene A151R is involved in the process of virulence in domestic swine. Viruses 14(8):1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath. 3(3):71–85 (PMID: 25558171; PMCID: PMC4280562)

    Google Scholar 

  58. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9(2):121–132

    Article  CAS  PubMed  Google Scholar 

  59. Senthilkumar D, Rajukumar K, Venkatesh G, Singh F, Tosh C, Kombiah S, Dubey CK, Chakravarty A, Barman NN, Singh VP (2022) Complete genome analysis of African swine fever virus isolated from domestic pigs during the first ASF outbreaks in India. Transbound Emerg Dis 69(5):e2020–e2027. https://doi.org/10.1111/tbed.14536

    Article  CAS  PubMed  Google Scholar 

  60. Shao L, Wang J, Karatas O, Ittmann M (2021) MEX3D is an oncogenic driver in prostate cancer. Prostate 81(15):1202–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi JW, Huang Y (2017) Mex3a expression and survival analysis of bladder urothelial carcinoma. Oncotarget 8(33):54764–54774

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sun WY, Wu JJ, Peng WT, Sun JC, Wei W (2018) The role of G protein-coupled receptor kinases in the pathology of malignant tumors. Acta Pharmacol Sin 39(11):1699–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129. https://doi.org/10.1038/nrc2780

    Article  CAS  PubMed  Google Scholar 

  64. Wernike K, Hoffmann B, Dauber M, Lange E, Schirrmeier H, Beer M (2012) Detection and typing of highly pathogenic porcine reproductive and respiratory syndrome virus by multiplex real-time rt-PCR. PLoS ONE 7(6):e38251

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weichert W, Boehm M, Gekeler V, Bahra M, Langrehr J, Neuhaus P, Denkert C, Imre G, Weller C, Hofmann HP, Niesporek S (2007) High expression of RelA/p65 is associated with activation of nuclear factor-κB-dependent signaling in pancreatic cancer and marks a patient population with poor prognosis. Br J Cancer 97(4):523–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wu CC, Tsai FM, Shyu RY, Tsai YM, Wang CH, Jiang SY (2011) G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells. BMC Cancer 11:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu Y, Liu XM, Wang XJ, Zhang Y, Liang XQ, Cao EH (2009) PIG11 is involved in hepatocellular carcinogenesis and its over-expression promotes Hepg2 cell apoptosis. Pathol Oncol Res` 15:411–416

    Article  CAS  PubMed  Google Scholar 

  68. Yang J, Chatterjee-Kishore M, Staugaitis SM, Nguyen H, Schlessinger K, Levy DE et al (2005) Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res 65:939–947

    Article  CAS  PubMed  Google Scholar 

  69. Yang B, Shen C, Zhang D, Zhang T, Shi X, Yang J, Hao Y, Zhao D, Cui H, Yuan X, Chen X (2021) Mechanism of interaction between virus and host is inferred from the changes of gene expression in macrophages infected with African swine fever virus CN/GS/2018 strain. Virol J 18:1–16

    CAS  Google Scholar 

  70. Yu HG, Yu LL, Yang Y, Luo HS, Yu JP, Meier JJ, Schrader H, Bastian A, Schmidt WE, Schmitz F (2003) Increased expression of RelA/nuclear factor-κB protein correlates with colorectal tumorigenesis. Oncology 65(1):37–45

    Article  CAS  PubMed  Google Scholar 

  71. Zhang J, Gao Q, Li P, Liu X, Jia Y, Wu W, Li J, Dong S, Koseki H, Wong J (2011) S phase-dependent interaction with DNMT1 dictates the role of UHRF1 but not UHRF2 in DNA methylation maintenance. Cell Res 21:1723–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang J, Tang Z, Wang N, Long L, Li KJD, c. biology, (2012) Evaluating a set of reference genes for expression normalization in multiple tissues and skeletal muscle at different development stages in pigs using quantitative real-time polymerase chain reaction. DNA Cell Biol 31:106–113

    Article  PubMed  Google Scholar 

  73. Zhang M, Cao L, Hou G, Lv X, Deng J (2022) Investigation of the potential correlation between RNA-binding proteins in the evolutionarily conserved MEX3 family and non-small-cell lung cancer. Mol Biotechnol 65:1–12

    CAS  Google Scholar 

  74. Zhang Y, Li Y, Guan Z, Yang Y, Zhang J, Sun Q, Li B, Qiu Y, Liu K, Shao D, Ma Z (2022) Rapid differential detection of Japanese encephalitis virus and Getah virus in pigs or mosquitos by a duplex TaqMan real-time RT-PCR assay. Front Vet Sci 9:437

    Google Scholar 

  75. Zhao Q, Li T, Qi J, Liu J, Qin C (2014) The miR-545/374a cluster encoded in the Ftx lncRNA is overexpressed in HBV-related hepatocellular carcinoma and promotes tumorigenesis and tumor progression. PLoS ONE 9(10):e109782

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  76. Zheng R, Liu Q, Wang T, Wang L, Zhang Y (2018) FAM98A promotes proliferation of non-small cell lung cancer cells via the P38-ATF2 signaling pathway. Cancer Manag Res 10:2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zheng Z, Chen X, Cai X, Lin H, Xu J, Cheng X (2022) RNA-binding protein MEX3D promotes cervical carcinoma tumorigenesis by destabilizing TSC22D1 mRNA. Cell Death Discov 8(1):250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou T, Cheng X, Ke Z, Ma Q, Xiang J, Gao M, Huang Y, Su Z (2023) Molecular mechanism of CCDC106 regulating the p53-Mdm2/MdmX signal axis. Res Sq. https://doi.org/10.21203/rs.3.rs-2619337/v

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhu J, Ramanathan P, Bishop E, O’Donnell V, Gladue D, Borca M (2019) Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PLoS ONE 14:e0223955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Director of the ICAR-National Research Centre on Pig in Guwahati, Assam, India, for providing the essential facilities for the current study. The authors are grateful to the Indian Council of Agricultural Research in New Delhi for providing funding for Illumina high-throughput transcriptome sequencing. The authors would also like to express their gratitude to the Department of Biotechnology, Government of India (BT/PR46409/AAQ/1/852/2022), for providing partial financial assistance. Mr. Bimal Rajbangshi, Field Assistant, deserves special recognition for his assistance with sample collecting and processing.

Funding

This study is funded by Department of Biotechnology, Ministry of Science and Technology, India (BT/PR46409/AAQ/1/852/2022).

Author information

Authors and Affiliations

Authors

Contributions

RD and VKG: design of the concept. NA and SRP: sample collection and processing. GSS, RD, SRP, PJD: wet lab work. IS and JS: dry lab work. RD, SC, AS and NA: manuscript drafting. JS, SC, SR and VK: proofreading of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Rajib Deb, Pranab Jyoti Das or Vivek Kumar Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

Tissue samples were collected with the approval of the Institutional Animal Ethics Committee (IAEC) with the approval code no. NRCP/IAEC/1658/2023-24/90, dated 25-04-2023.

Additional information

Handling Editor: William G Dundon .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 207 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, R., Sengar, G.S., Sonowal, J. et al. Transcriptome signatures of host tissue infected with African swine fever virus reveal differential expression of associated oncogenes. Arch Virol 169, 54 (2024). https://doi.org/10.1007/s00705-023-05959-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05959-4

Navigation