Skip to main content

Advertisement

Log in

Bacteriophages and their derived enzymes as promising alternatives for the treatment of Acinetobacter baumannii infections

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Nosocomial infections with the opportunistic bacterium Acinetobacter baumannii pose a severe challenge to clinical treatment, which is aggravated by the increasing occurrence of multi-drug resistance, especially resistance to carbapenems. The use of phage therapy as an alternative and supplement to the current antibiotics has become an important research topic in the post-antibiotic era. This review summarizes in vivo and in vitro studies on phage therapy against multi-drug-resistant A. baumannii infection that have used different approaches, including treatment with a single phage, combination with other phages or non-phage agents, and administration of phage-derived enzymes. We also briefly discuss the current challenges of phage-based therapy as well as promising approaches for the treatment of A. baumannii infection in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data used for this review are publicly available from the PubMed database and can be accessed using the DOI of the corresponding reference.

References

  1. Chen LK, Liu YL, Hu AR et al (2013) Potential of bacteriophage phi AB2 as an environmental biocontrol agent for the control of multidrug-resistant Acinetobacter baumannii. BMC Microbiol 13:10. https://doi.org/10.1186/1471-2180-13-154

    Article  Google Scholar 

  2. Vila J, Pachon J (2012) Therapeutic options for Acinetobacter baumannii infections: an update. Expert Opin Pharmacother 13:2319–2336. https://doi.org/10.1517/14656566.2012.729820

    Article  CAS  PubMed  Google Scholar 

  3. Tacconelli E, Carrara E, Savoldi A et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  4. Cai Y, Chai D, Wang R et al (2012) Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 67:1607–1615. https://doi.org/10.1093/jac/dks084

    Article  CAS  PubMed  Google Scholar 

  5. Zhou H, Sun X, Lyu S et al (2023) Evaluation of tigecycline utilization and trends in antibacterial resistance from 2018 to 2021 in a comprehensive teaching hospital in China. Infect Drug Resist 16:879–889. https://doi.org/10.2147/IDR.S395158

    Article  PubMed  PubMed Central  Google Scholar 

  6. Roy S, Chowdhury G, Mukhopadhyay AK et al (2022) Convergence of biofilm formation and antibiotic resistance in Acinetobacter baumannii infection. Front Med 9:32. https://doi.org/10.3389/fmed.2022.793615

    Article  Google Scholar 

  7. Asif M, Alvi IA, Rehman SU (2018) Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resistance 11:1249–1260. https://doi.org/10.2147/idr.S166750

    Article  CAS  Google Scholar 

  8. Altamirano FLG, Barr JJ (2019) Phage therapy in the postantibiotic era. Clin Microbiol Rev 32:25. https://doi.org/10.1128/cmr.00066-18

    Article  CAS  Google Scholar 

  9. Soothill JS (1992) Treatment of experimental infections of mice with bacteriophages. J Med Microbiol 37:258–261. https://doi.org/10.1099/00222615-37-4-258

    Article  CAS  PubMed  Google Scholar 

  10. Cha K, Oh HK, Jang JY et al (2018) Characterization of two novel bacteriophages infecting multidrug-resistant (MDR) Acinetobacter baumannii and evaluation of their therapeutic efficacy in vivo. Front Microbiol 9:696. https://doi.org/10.3389/fmicb.2018.00696

    Article  PubMed  PubMed Central  Google Scholar 

  11. Regeimbal JM, Jacobs AC, Corey BW et al (2016) Personalized therapeutic cocktail of wild environmental phages rescues mice from Acinetobacter baumannii wound infections. Antimicrob Agents Chemother 60:5806–5816. https://doi.org/10.1128/aac.02877-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leshkasheli L, Kutateladze M, Balarjishvili N et al (2019) Efficacy of newly isolated and highly potent bacteriophages in a mouse model of extensively drug-resistant Acinetobacter baumannii bacteraemia. J Glob Antimicrob Resist 19:255–261. https://doi.org/10.1016/j.jgar.2019.05.005

    Article  PubMed  Google Scholar 

  13. Jasim HN, Hafidh RR, Abdulamir AS (2018) Formation of therapeutic phage cocktail and endolysin to highly multi-drug resistant Acinetobacter baumannii: in vitro and in vivo study. Iran J Basic Med Sci 21:1100–1108. https://doi.org/10.22038/ijbms.2018.27307.6665

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schooley RT, Biswas B, Gill JJ et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61:14. https://doi.org/10.1128/aac.00954-17

    Article  CAS  Google Scholar 

  15. Tan X, Chen HS, Zhang M et al (2021) Clinical experience of personalized phage therapy against carbapenem-resistant Acinetobacter baumannii lung infection in a patient with chronic obstructive pulmonary disease. Front Cell Infect Microbiol 11:7. https://doi.org/10.3389/fcimb.2021.631585

    Article  CAS  Google Scholar 

  16. Wu NN, Dai J, Guo MQ et al (2021) Pre-optimized phage therapy on secondary Acinetobacter baumannii infection in four critical COVID-19 patients. Emerg Microbes Infect 10:612–618. https://doi.org/10.1080/22221751.2021.1902754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chu JJK, Poh WH, Hasnuddin NTB et al (2022) Novel phage lysin Abp013 against Acinetobacter baumannii. Antibiotics-Basel 11:13. https://doi.org/10.3390/antibiotics11020169

    Article  CAS  Google Scholar 

  18. Chen X, Liu M, Zhang PF et al (2022) Phage-derived depolymerase as an antibiotic adjuvant against multidrug-resistant Acinetobacter baumannii. Front Microbiol 13:16. https://doi.org/10.3389/fmicb.2022.845500

    Article  CAS  Google Scholar 

  19. Huang GT, Le S, Peng YZ et al (2013) Characterization and genome sequencing of phage Abp1, a new phiKMV-like virus infecting multidrug-resistant Acinetobacter baumannii. Curr Microbiol 66:535–543. https://doi.org/10.1007/s00284-013-0308-7

    Article  CAS  PubMed  Google Scholar 

  20. Hyman P (2019) Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals (Basel). https://doi.org/10.3390/ph12010035

    Article  PubMed  Google Scholar 

  21. Onodera K (2010) Molecular biology and biotechnology of bacteriophage. Adv Biochem Eng Biotechnol 119:17–43. https://doi.org/10.1007/10_2008_46

    Article  CAS  PubMed  Google Scholar 

  22. Jeon J, D’Souza R, Pinto N et al (2016) Characterization and complete genome sequence analysis of two Myoviral bacteriophages infecting clinical carbapenem-resistant Acinetobacter baumannii isolates. J Appl Microbiol 121:68–77. https://doi.org/10.1111/jam.13134

    Article  CAS  PubMed  Google Scholar 

  23. Soontarach R, Srimanote P, Enright MC et al (2022) Isolation and characterisation of bacteriophage selective for key Acinetobacter baumannii capsule chemotypes. Pharmaceuticals 15:15. https://doi.org/10.3390/ph15040443

    Article  CAS  Google Scholar 

  24. Styles KM, Thummeepak R, Leungtongkam U et al (2020) Investigating bacteriophages targeting the opportunistic pathogen Acinetobacter baumannii. Antibiotics (Basel) 9:19. https://doi.org/10.3390/antibiotics9040200

    Article  CAS  Google Scholar 

  25. Sisakhtpour B, Mirzaei A, Karbasizadeh V et al (2022) The characteristic and potential therapeutic effect of isolated multidrug-resistant Acinetobacter baumannii lytic phage. Ann Clin Microbiol Antimicrob 21:11. https://doi.org/10.1186/s12941-022-00492-9

    Article  CAS  Google Scholar 

  26. Jeon J, Park JH, Yong D (2019) Efficacy of bacteriophage treatment against carbapenem-resistant Acinetobacter baumannii in Galleria mellonella larvae and a mouse model of acute pneumonia. BMC Microbiol 19:14. https://doi.org/10.1186/s12866-019-1443-5

    Article  Google Scholar 

  27. Jeon J, Ryu CM, Lee JY et al (2016) In vivo application of bacteriophage as a potential therapeutic agent to control OXA-66-like carbapenemase-producing Acinetobacter baumannii strains belonging to sequence type 357. Appl Environ Microbiol 82:4200–4208. https://doi.org/10.1128/aem.00526-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Mi ZQ, Niu WK et al (2016) Intranasal treatment with bacteriophage rescues mice from Acinetobacter baumannii-mediated pneumonia. Future Microbiol 11:631–641. https://doi.org/10.2217/fmb.16.11

    Article  CAS  PubMed  Google Scholar 

  29. Wienhold SM, Brack MC, Nouailles G et al (2021) Preclinical assessment of bacteriophage therapy against experimental Acinetobacter baumannii lung infection. Viruses. https://doi.org/10.3390/v14010033

    Article  PubMed  PubMed Central  Google Scholar 

  30. Altamirano FG, Forsyth JH, Patwa R et al (2021) Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat Microbiol 6:157. https://doi.org/10.1038/s41564-020-00830-7

    Article  CAS  Google Scholar 

  31. Wu M, Hu K, Xie Y et al (2019) A novel phage PD-6A3, and its endolysin Ply6A3, with extended lytic activity against Acinetobacter baumannii. Front Microbiol 10:196. https://doi.org/10.3389/fmicb.2019.00196

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yuan YY, Wang LL, Li XY et al (2019) Efficacy of a phage cocktail in controlling phage resistance development in multidrug resistant Acinetobacter baumannii. Virus Res 272:8. https://doi.org/10.1016/j.virusres.2019.197734

    Article  CAS  Google Scholar 

  33. Patel S, Pratap C, Nath G (2021) Evaluation of bacteriophage cocktail on septicaemia caused by colistin-resistant Acinetobacter baumannii in immunocompromised mice model. Indian J Med Res 154:141–149. https://doi.org/10.4103/ijmr.IJMR_2271_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cha K, Oh HK, Jang JY et al (2018) Characterization of two novel bacteriophages infecting multidrug-resistant (MDR) Acinetobacter baumannii and evaluation of their therapeutic efficacy in vivo. Front Microbiol 9:12. https://doi.org/10.3389/fmicb.2018.0069

    Article  Google Scholar 

  35. Rouse MD, Stanbro J, Roman JA, et al. (2020) Impact of frequent administration of bacteriophage on therapeutic efficacy in an A. baumannii mouse wound infection model. Front Microbiol 11:13. Doi: https://doi.org/10.3389/fmicb.2020.00414.

  36. Figueiredo CM, Karwowski MSM, Ramos R et al (2021) Bacteriophages as tools for biofilm biocontrol in different fields. Biofouling 37:689–709. https://doi.org/10.1080/08927014.2021.1955866

    Article  CAS  PubMed  Google Scholar 

  37. Wintachai P, Surachat K, Singkhamanan K (2022) Isolation and characterization of a novel autographiviridae phage and its combined effect with tigecycline in controlling multidrug-resistant Acinetobacter baumannii-associated skin and soft tissue infections. Viruses (Basel) 14:25. https://doi.org/10.3390/v14020194

    Article  CAS  Google Scholar 

  38. Vukotic G, Obradovic M, Novovic K et al (2020) Characterization, antibiofilm, and depolymerizing activity of two phages active on carbapenem-resistant Acinetobacter baumannii. Front Med 7:12. https://doi.org/10.3389/fmed.2020.00426

    Article  Google Scholar 

  39. Thawal ND, Yele AB, Sahu PK et al (2012) Effect of a novel podophage AB7-IBB2 on Acinetobacter baumannii biofilm. Curr Microbiol 65:66–72. https://doi.org/10.1007/s00284-012-0127-2

    Article  CAS  PubMed  Google Scholar 

  40. Liu YN, Mi ZQ, Niu WK et al (2016) Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro. Future Microbiol 11:1383–1393. https://doi.org/10.2217/fmb-2016-0104

    Article  CAS  PubMed  Google Scholar 

  41. Wintachai P, Voravuthikunchai SP (2022) Characterization of novel lytic Myoviridae phage infecting multidrug-resistant Acinetobacter baumannii and synergistic antimicrobial efficacy between phage and sacha inchi oil. Pharmaceuticals 15:30. https://doi.org/10.3390/ph15030291

    Article  CAS  Google Scholar 

  42. Peters DL, Davis CM, Harris G et al (2023) Characterization of virulent T4-like Acinetobacter baumannii bacteriophages DLP1 and DLP2. Viruses. https://doi.org/10.3390/v15030739

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yele AB, Thawal ND, Sahu PK et al (2012) Novel lytic bacteriophage AB7-IBB1 of Acinetobacter baumannii: isolation, characterization and its effect on biofilm. Arch Virol 157:1441–1450. https://doi.org/10.1007/s00705-012-1320-0

    Article  CAS  PubMed  Google Scholar 

  44. Jiang LL, Tan JJ, Hao Y et al (2020) Isolation and characterization of a novel myophage Abp9 against pandrug resistant Acinetobacater baumannii. Front Microbiol 11:9. https://doi.org/10.3389/fmicb.2020.506068

    Article  PubMed  PubMed Central  Google Scholar 

  45. Escobar-Paramo P, Gougat-Barbera C, Hochberg ME (2012) Evolutionary dynamics of separate and combined exposure of Pseudomonas fluorescens SBW25 to antibiotics and bacteriophage. Evol Appl 5:583–592. https://doi.org/10.1111/j.1752-4571.2012.00248.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Torres-Barcelo C, Hochberg ME (2016) Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol 24:249–256. https://doi.org/10.1016/j.tim.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  47. Oyejobi GK, Xiong DY, Shi MJ et al (2022) Genetic signatures from adaptation of bacteria to lytic phage identify potential agents to aid phage killing of multidrug-resistant Acinetobacter baumannii. J Bacteriol 204:15. https://doi.org/10.1128/jb.00593-21

    Article  Google Scholar 

  48. Jansen M, Wahida A, Latz S et al (2018) Enhanced antibacterial effect of the novel T4-like bacteriophage KARL-1 in combination with antibiotics against multi-drug resistant Acinetobacter baumannii. Sci Rep 8:12. https://doi.org/10.1038/s41598-018-32344-y

    Article  CAS  Google Scholar 

  49. Grygorcewicz B, Roszak M, Golec P et al (2020) Antibiotics act with vB_AbaP_AGC01 phage against Acinetobacter baumanniiin human heat-inactivated plasma blood and Galleria mellonella models. Int J Mol Sci 21:14. https://doi.org/10.3390/ijms21124390

    Article  CAS  Google Scholar 

  50. Wintachai P, Phaonakrop N, Roytrakul S et al (2022) Enhanced antibacterial effect of a novel Friunavirus phage vWU2001 in combination with colistin against carbapenem-resistant Acinetobacter baumannii. Sci Rep 12:19. https://doi.org/10.1038/s41598-022-06582-0

    Article  CAS  Google Scholar 

  51. Blasco L, Ambroa A, Lopez M et al (2019) Combined use of the Ab105-2ϕ∆CI lytic mutant phage and different antibiotics in clinical isolates of multi-resistant Acinetobacter baumannii. Microorganisms 7:14. https://doi.org/10.3390/microorganisms7110556

    Article  CAS  Google Scholar 

  52. Grygorcewicz B, Wojciuk B, Roszak M et al (2021) Environmental phage-based cocktail and antibiotic combination effects on Acinetobacter baumannii biofilm in a human urine model. Microb Drug Resist 27:25–35. https://doi.org/10.1089/mdr.2020.0083

    Article  CAS  PubMed  Google Scholar 

  53. Nir-Paz R, Gelman D, Khouri A et al (2019) Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination. Clin Infect Dis 69:2015–2018. https://doi.org/10.1093/cid/ciz222

    Article  PubMed  Google Scholar 

  54. Tagliaferri TL, Jansen M, Horz HP (2019) Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol 9:13. https://doi.org/10.3389/fcimb.2019.00022

    Article  CAS  Google Scholar 

  55. Ran B, Yuan YY, Xia WX et al (2021) A photo-sensitizable phage for multidrug-resistant Acinetobacter baumannii therapy and biofilm ablation. Chem Sci 12:1054–1061. https://doi.org/10.1039/d0sc04889e

    Article  CAS  Google Scholar 

  56. Yan W, Banerjee P, Liu YN et al (2021) Development of thermosensitive hydrogel wound dressing containing Acinetobacter baumannii phage against wound infections. Int J Pharm 602:10. https://doi.org/10.1016/j.ijpharm.2021.120508

    Article  CAS  Google Scholar 

  57. Lai WCB, Chen X, Ho MKY et al (2020) Bacteriophage-derived endolysins to target gram-negative bacteria. Int J Pharm 589:17. https://doi.org/10.1016/j.ijpharm.2020.119833

    Article  CAS  Google Scholar 

  58. Blasco L, Ambroa A, Trastoy R et al (2020) In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens. Sci Rep 10:7163. https://doi.org/10.1038/s41598-020-64145-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim S, Jin JS, Choi YJ et al (2020) LysSAP26, a new recombinant phage endolysin with a broad spectrum antibacterial activity. Viruses-Basel 12:9. https://doi.org/10.3390/v12111340

    Article  CAS  Google Scholar 

  60. Kim S, Lee DW, Jin JS et al (2020) Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. J Glob Antimicrob Resist 22:32–39. https://doi.org/10.1016/j.jgar.2020.01.005

    Article  PubMed  Google Scholar 

  61. Li CC, Jiang MW, Khan FM et al (2021) Intrinsic antimicrobial peptide facilitates a new broad-spectrum lysin LysP53 to kill Acinetobacter baumannii in vitro and in a mouse burn infection model. ACS Infect Dis 7:3336–3344. https://doi.org/10.1021/acsinfecdis.1c00497

    Article  CAS  PubMed  Google Scholar 

  62. Peng SY, You RI, Lai MJ et al (2017) Highly potent antimicrobial modified peptides derived from the Acinetobacter baumannii phage endolysin LysAB2. Sci Rep 7:12. https://doi.org/10.1038/s41598-017-11832-7

    Article  CAS  Google Scholar 

  63. Yuan YY, Li XY, Wang LL et al (2021) The endolysin of the Acinetobacter baumanniiphage vB_AbaP_D2 shows broad antibacterial activity. Microb Biotechnol 14:403–418. https://doi.org/10.1111/1751-7915.13594

    Article  CAS  PubMed  Google Scholar 

  64. Antonova NP, Vasina DV, Lendel AM et al (2019) Broad bactericidal activity of the Myoviridae bacteriophage Lysins LysAm 24, LysECD7, and LysSi3 against Gram-negative ESKAPE pathogens. Viruses-Basel 11:16. https://doi.org/10.3390/v11030284

    Article  CAS  Google Scholar 

  65. Briers Y, Walmagh M, Van Puyenbroeck V et al (2014) Engineered endolysin-based “Artilysins” to combat multidrug-resistant Gram-negative pathogens. MBio 5:10. https://doi.org/10.1128/mBio.01379-14

    Article  CAS  Google Scholar 

  66. Eze EC, Chenia HY, El Zowalaty ME (2018) Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist 11:2277–2299. https://doi.org/10.2147/idr.S169894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Qi L, Li H, Zhang C et al (2016) Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Acinetobacter baumannii. Front Microbiol 7:483. https://doi.org/10.3389/fmicb.2016.00483

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang C, Li PY, Zhu Y et al (2020) Identification of a novel Acinetobacter baumannii phage-derived depolymerase and its therapeutic application in mice. Front Microbiol 11:11. https://doi.org/10.3389/fmicb.2020.01407

    Article  Google Scholar 

  69. Zhang J, Xu LL, Gan D et al (2018) In vitro study of bacteriophage AB3 endolysin LysAB3 activity against Acinetobacter baumannii biofilm and biofilm-bound A-baumannii. Clin Lab 64:1021–1030. https://doi.org/10.7754/Clin.Lab.2018.180342

    Article  CAS  PubMed  Google Scholar 

  70. Blasco L, Ambroa A, Trastoy R et al (2020) In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens. Sci Rep 10:12. https://doi.org/10.1038/s41598-020-64145-7

    Article  CAS  Google Scholar 

  71. Thummeepak R, Kitti T, Kunthalert D et al (2016) Enhanced antibacterial activity of Acinetobacter baumannii bacteriophage OABP-01 endolysin (LysABP-01) in combination with colistin. Front Microbiol 7:1402. https://doi.org/10.3389/fmicb.2016.01402

    Article  PubMed  PubMed Central  Google Scholar 

  72. Abdelkader K, Gutierrez D, Grimon D et al (2020) Lysin LysMK34 of Acinetobacter baumannii bacteriophage PMK34 has a turgor pressure-dependent intrinsic antibacterial activity and reverts colistin resistance. Appl Environ Microbiol 86:17. https://doi.org/10.1128/aem.01311-20

    Article  CAS  Google Scholar 

  73. Knecht LE, Veljkovic M, Fieseler L (2019) Diversity and function of phage encoded depolymerases. Front Microbiol 10:2949. https://doi.org/10.3389/fmicb.2019.02949

    Article  PubMed  Google Scholar 

  74. Liu YN, Mi ZQ, Mi LY et al (2019) Identification and characterization of capsule depolymerase Dpo48 from Acinetobacter baumannii phage IME200. PeerJ 7:23. https://doi.org/10.7717/peerj.6173

    Article  CAS  Google Scholar 

  75. Popova AV, Shneider MM, Myakinina VP et al (2019) Characterization of myophage AM24 infecting Acinetobacter baumannii of the K9 capsular type. Arch Virol 164:1493–1497. https://doi.org/10.1007/s00705-019-04208-x

    Article  CAS  PubMed  Google Scholar 

  76. Singh JK, Adams FG, Brown MH (2018) Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Front Microbiol 9:3301. https://doi.org/10.3389/fmicb.2018.03301

    Article  PubMed  Google Scholar 

  77. Oliveira H, Costa AR, Ferreira A et al (2019) Functional analysis and antivirulence properties of a new depolymerase from a Myovirus that infects Acinetobacter baumannii capsule K45. J Virol 93:16. https://doi.org/10.1128/jvi.01163-18

    Article  CAS  Google Scholar 

  78. Kasimova AA, Arbatsky NP, Timoshina OY et al (2021) The K26 capsular polysaccharide from Acinetobacter baumannii KZ-1098: Structure and cleavage by a specific phage depolymerase. Int J Biol Macromol 191:182–191. https://doi.org/10.1016/j.ijbiomac.2021.09.073

    Article  CAS  PubMed  Google Scholar 

  79. Carson L, Gorman SP, Gilmore BF (2010) The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunol Med Microbiol 59:447–455. https://doi.org/10.1111/j.1574-695X.2010.00696.x

    Article  CAS  PubMed  Google Scholar 

  80. Dunsing V, Irmscher T, Barbirz S et al (2019) Purely polysaccharide-based biofilm matrix provides size-selective diffusion barriers for nanoparticles and bacteriophages. Biomacromol 20:3842–3854. https://doi.org/10.1021/acs.biomac.9b00938

    Article  CAS  Google Scholar 

  81. Satta G, O’Callagharn C, Clokie MRJ et al (2022) Advancing bacteriophages as a treatment of antibiotic-resistant bacterial pulmonary infections. Curr Opin Pulm Med 28:225–231. https://doi.org/10.1097/mcp.0000000000000864

    Article  CAS  PubMed  Google Scholar 

  82. Abedon ST, Danis-Wlodarczyk KM, Wozniak DJ (2021) Phage cocktail development for bacteriophage therapy: toward improving spectrum of activity breadth and depth. Pharmaceuticals (Basel). https://doi.org/10.3390/ph14101019

    Article  PubMed  Google Scholar 

  83. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783. https://doi.org/10.2217/fmb.13.47

    Article  CAS  PubMed  Google Scholar 

  84. Philipson CW, Voegtly LJ, Lueder MR et al (2018) Characterizing phage genomes for therapeutic applications. Viruses. https://doi.org/10.3390/v10040188

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang JL, Kuo CF, Yeh CM et al (2018) Efficacy of phi km18p phage therapy in a murine model of extensively drug-resistant Acinetobacter baumannii infection. Infect Drug Resistance 11:2301–2310. https://doi.org/10.2147/idr.S179701

    Article  CAS  Google Scholar 

  86. Chan BK, Sistrom M, Wertz JE et al (2016) Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 6:26717. https://doi.org/10.1038/srep26717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang XQ, Loh B, Altamirano FG et al (2021) Colistin-phage combinations decrease antibiotic resistance in Acinetobacter baumannii via changes in envelope architecture. Emerg Microbes Infect 10:2205–2219. https://doi.org/10.1080/22221751.2021.2002671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gajdács M (2019) The concept of an ideal antibiotic: Implications for drug design. Molecules. https://doi.org/10.3390/molecules24050892

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fischetti VA (2008) Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11:393–400. https://doi.org/10.1016/j.mib.2008.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jado I, López R, García E et al (2003) Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother 52:967–973. https://doi.org/10.1093/jac/dkg485

    Article  CAS  PubMed  Google Scholar 

  91. Nau R, Eiffert H (2002) Modulation of release of proinflammatory bacterial compounds by antibacterials: potential impact on course of inflammation and outcome in sepsis and meningitis. Clin Microbiol Rev 15:95–110. https://doi.org/10.1128/cmr.15.1.95-110.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pinto AM, Silva MD, Pastrana LM et al (2021) The clinical path to deliver encapsulated phages and lysins. Fems Microbiol Rev 45:29. https://doi.org/10.1093/femsre/fuab019

    Article  CAS  Google Scholar 

  93. Oliveira H, Thiagarajan V, Walmagh M et al (2014) A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids. PLoS ONE 9:e108376. https://doi.org/10.1371/journal.pone.0108376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Oliveira H, Pinto G, Oliveira A et al (2016) Characterization and genome sequencing of a Citrobacter freundii phage CfP1 harboring a lysin active against multidrug-resistant isolates. Appl Microbiol Biotechnol 100:10543–10553. https://doi.org/10.1007/s00253-016-7858-0

    Article  CAS  PubMed  Google Scholar 

  95. Yan W, He RD, Tang XJ et al (2021) The influence of formulation components and environmental humidity on spray-dried phage powders for treatment of respiratory infections caused by Acinetobacter baumannii. Pharmaceutics 13:17. https://doi.org/10.3390/pharmaceutics13081162

    Article  CAS  Google Scholar 

  96. Garvey M (2020) Bacteriophages and the one health approach to combat multidrug resistance: Is this the way? Antibiotics (Basel) 9:17. https://doi.org/10.3390/antibiotics9070414

    Article  CAS  Google Scholar 

  97. Parasion S, Kwiatek M, Gryko R et al (2014) Bacteriophages as an alternative strategy for fighting biofilm development. Pol J Microbiol 63:137–145

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020MH305), and the Medical and Health Science and Technology Development Program of Shandong Province, China (Grant No. 2019WS593).

Author information

Authors and Affiliations

Authors

Contributions

Literature search and data analysis were carried out by MW, YN, XJ, and JL. The first draft of the manuscript was written by MW and YN. The manuscript was critically revised by JQ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinjuan Qiao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Additional information

Handling Editor: T. K. Frey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 178 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Ning, Y., Jiao, X. et al. Bacteriophages and their derived enzymes as promising alternatives for the treatment of Acinetobacter baumannii infections. Arch Virol 168, 288 (2023). https://doi.org/10.1007/s00705-023-05910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05910-7

Navigation