Skip to main content
Log in

Identification of a novel dicistro-like virus associated with the roots of tomato plants

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Viruses belonging to the family Dicistroviridae have a monopartite positive-sense single-stranded RNA genome and infect a variety of arthropods. Using high-throughput sequencing, we detected a novel dicistro-like virus, tentatively named "tomato root-associated dicistro-like virus" (TRaDLV), in the roots of tomato plants showing yellow mosaic symptoms on the leaves. The diseased tomato plants were coinfected with multiple plant viruses, and TRaDLV was present in the roots but not in the leaves. The genome of TRaDLV is 8726 nucleotides in length, excluding the poly(A) tail, and contains two open reading frames (ORFs) separated by an intergenic region (IGR). The TRaDLV genome showed characteristics similar to those of dicistroviruses, including the presence of a 3C-like protease domain, repeated amino acid sequences representing multiple copies of viral genome-linked protein (VPg)-like sequences in the ORF1 polyprotein, and a series of stem-loop structures resembling an internal ribosome entry site in the IGR. Phylogenetic analysis revealed that TRaDLV clustered with unclassified dicistro-like viruses from invertebrates or identified in samples of plant-derived material. These findings indicate the existence of a novel dicistro-like virus that may associate with plant roots or a root-inhabiting organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The complete genomic nucleotide sequence of TRaDLV has been deposited in the NCBI GenBank database under accession number OQ983468.

References

  1. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bonning BC, Miller WA (2010) Dicistroviruses Annual review of entomology 55:129–150

    Article  CAS  PubMed  Google Scholar 

  3. Cao X, Liu J, Pang J, Kondo H, Chi S, Zhang J, Sun L, Andika IB (2022) Common but nonpersistent acquisitions of plant viruses by plant-associated fungi. Viruses 14:2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng R-L, Li X-F, Zhang C-X (2021) Novel dicistroviruses in an unexpected wide range of invertebrates. Food and Environmental Virology 13:423–431

    Article  PubMed  Google Scholar 

  5. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan P-L, Briese T, Hornig M, Geiser DM (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287

    Article  CAS  PubMed  Google Scholar 

  6. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM (2021) Twelve years of SAMtools and BCFtools. Gigascience 10:giab008

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dastjerdi A, Everest DJ, Davies H, Denk D, Zell R (2021) A novel dicistrovirus in a captive red squirrel (Sciurus vulgaris). J Gen Virol 102:001555

    Article  CAS  Google Scholar 

  8. Duraisamy R, Akiana J, Davoust B, Mediannikov O, Michelle C, Robert C, Parra H-J, Raoult D, Biagini P, Desnues C (2018) Detection of novel RNA viruses from free-living gorillas, Republic of the Congo: genetic diversity of picobirnaviruses. Virus Genes 54:256–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gildow F, d'Arcy C (1988) Barley and oats as reservoirs for an aphid virus and the influence on barley yellow dwarf virus transmission. Phytopathology 78:811–816

    Article  Google Scholar 

  10. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Greninger AL, Jerome KR (2016) Draft genome sequence of goose dicistrovirus. Genome announcements 4:e00068–e00016

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hasson K, Lightner D, Poulos B, Redman R, White B, Brock J, Bonami J (1995) Taura syndrome in Penaeus vannamei: demonstration of a viral etiology. Dis Aquat Organ 23:115–126

    Article  Google Scholar 

  13. Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522

    Article  CAS  PubMed  Google Scholar 

  14. Holtz LR, Cao S, Zhao G, Bauer IK, Denno DM, Klein EJ, Antonio M, Stine OC, Snelling TL, Kirkwood CD (2014) Geographic variation in the eukaryotic virome of human diarrhea. Virology 468:556–564

    Article  PubMed  Google Scholar 

  15. KANAMORI Y, NAKASHIMA N (2001) A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. RNA 7:266–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kondo H, Fujita M, Hisano H, Hyodo K, Andika IB, Suzuki N (2020) Virome analysis of aphid populations that infest the barley field: the discovery of two novel groups of Nege/Kita-like viruses and other novel RNA viruses. Front Microbiol 11:509

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koonin EV, Dolja VV, Morris TJ (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430

    Article  CAS  PubMed  Google Scholar 

  18. Mullapudi E, Přidal A, Pálková L, de Miranda JR, Plevka P (2016) Virion structure of Israeli acute bee paralysis virus. J Virol 90:8150–8159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakashima N, Shibuya N (2006) Multiple coding sequences for the genome-linked virus protein (VPg) in dicistroviruses. J Invertebr Pathol 92:100–104

    Article  CAS  PubMed  Google Scholar 

  20. Nguyen L-T, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    Article  CAS  PubMed  Google Scholar 

  21. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Phan TG, del Valle Mendoza J, Sadeghi M, Altan E, Deng X, Delwart E (2018) Sera of Peruvians with fever of unknown origins include viral nucleic acids from non-vertebrate hosts. Virus Genes 54:33–40

    Article  CAS  PubMed  Google Scholar 

  23. Reuter G, Pankovics P, Gyöngyi Z, Delwart E, Boros A (2014) Novel dicistrovirus from bat guano. Arch Virol 159:3453–3456

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki J, Nakashima N (1999) Translation initiation at the CUU codon is mediated by the internal ribosome entry site of an insect picorna-like virus in vitro. J Virol 73:1219–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shi M, Lin X-D, Tian J-H, Chen L-J, Chen X, Li C-X, Qin X-C, Li J, Cao J-P, Eden J-S (2016) Redefining the invertebrate RNA virosphere. Nature 540:539–543

    Article  CAS  PubMed  Google Scholar 

  26. Shin C, Choi D, Shirasu K, Hahn Y (2022) Identification of dicistro-like viruses in the transcriptome data of Striga asiatica and other plants. Acta Virol 66:157–165

    Article  CAS  PubMed  Google Scholar 

  27. Spurny R, Přidal A, Pálková L, Kiem HKT, de Miranda JR, Plevka P (2017) Virion structure of black queen cell virus, a common honeybee pathogen. J Virol 91:e02100–02116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Squires G, Pous J, Agirre J, Rozas-Dennis GS, Costabel MD, Marti GA, Navaza J, Bressanelli S, Guérin DM, Rey FA (2013) Structure of the Triatoma virus capsid. Acta Crystallogr Sect D: Biol Crystallogr 69:1026–1037

    Article  CAS  Google Scholar 

  29. Sun L, Kondo H, Andika IB (2021) In: Ency Virol D, Bamford M, Zuckerman (eds) Cross-kingdom virus infection, 4th edn. Elsevier, Amsterdam, pp 443–444

    Google Scholar 

  30. Tate J, Liljas L, Scotti P, Christian P, Lin T, Johnson JE (1999) The crystal structure of cricket paralysis virus: the first view of a new virus family. Nat Struct Biol 6:765–774

    Article  CAS  PubMed  Google Scholar 

  31. Valles S, Chen Y, Firth A, Guérin DA, Hashimoto Y, Herrero S, De Miranda J, Ryabov E, Consortium IR (2017) ICTV virus taxonomy profile: Dicistroviridae. J Gen Virol 98:355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Victoria JG, Kapoor A, Li L, Blinkova O, Slikas B, Wang C, Naeem A, Zaidi S, Delwart E (2009) Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J Virol 83:4642–4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Warsaba R, Sadasivan J, Jan E (2019) Dicistrovirus-host molecular interactions. Curr Issues Mol Biol 34:83–112

    PubMed  Google Scholar 

  34. Wilson JE, Powell MJ, Hoover SE, Sarnow P (2000) Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol Cell Biol 20:4990–4999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang S, Mao Q, Wang Y, He J, Yang J, Chen X, Xiao Y, He Y, Zhao M, Lu J (2022) Expanding known viral diversity in plants: virome of 161 species alongside an ancient canal. Environ Microbiome 17:58

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yinda CK, Zell R, Deboutte W, Zeller M, Conceição-Neto N, Heylen E, Maes P, Knowles NJ, Ghogomu SM, Van Ranst M (2017) Highly diverse population of Picornaviridae and other members of the Picornavirales, in Cameroonian fruit bats. BMC Genomics 18:1–14

    Article  Google Scholar 

  37. Zhou D, Liu S, Guo G, He X, Xing C, Miao Q, Chen G, Chen X, Yan H, Zeng J (2022) Virome Analysis of Normal and Growth Retardation Disease-Affected Macrobrachium rosenbergii. Microbiol Spectr 10:e01462–e01422

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Shenli Sui for assistance during the collection of plant samples.

Funding

This research was supported by the National Natural Science Foundation of China (31970159, 32001867) and the Natural Science Foundation of Shandong Province of China (ZR2020QC129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Bagus Andika.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Simona Abba

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Wang, Z., Pang, J. et al. Identification of a novel dicistro-like virus associated with the roots of tomato plants. Arch Virol 168, 214 (2023). https://doi.org/10.1007/s00705-023-05843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05843-1

Navigation