Skip to main content
Log in

Detection and full-genotype determination of rare and reassortant rotavirus A strains in Nizhny Novgorod in the European part of Russia

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Reassortant DS-1-like rotavirus A strains have been shown to circulate widely in many countries around the world. In Russia, the prevalence of such strains remains unclear due to the preferred use of the traditional binary classification system. In this work, we obtained partial sequence data from all 11 genome segments and determined the full-genotype constellations of rare and reassortant rotaviruses circulating in Nizhny Novgorod in 2016–2019. DS-1-like G3P[8] and G8P[8] strains were found, reflecting the global trend. Most likely, these strains were introduced into the territory of Russia from other countries but subsequently underwent further evolutionary changes locally. G3P[8], G9P[8], and G12P[8] Wa-like strains of subgenotypic lineages that are unusual for the territory of Russia were also identified. Reassortant G2P[8], G4P[4], and G9P[4] strains with one Wa-like gene (VP4 or VP7) on a DS-1-like backbone were found, and these apparently had a local origin. Feline-like G3P[9] and G6P[9] strains were found to be phylogenetically close to BA222 isolated from a cat in Italy but carried some traces of reassortment with human strains from Russia and other countries. Thus, full-genotype determination of rotavirus A strains in Nizhny Novgorod has clarified some questions related to their origin and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Troeger C, Khalil IA, Rao PC et al (2018) Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr 172:958. https://doi.org/10.1001/jamapediatrics.2018.1960

    Article  PubMed  PubMed Central  Google Scholar 

  2. Burnett E, Parashar UD, Tate JE (2020) Real-world effectiveness of rotavirus vaccines, 2006–19: A literature review and meta-analysis. Lancet Glob Heal 8:e1195–e1202. https://doi.org/10.1016/S2214-109X(20)30262-X

    Article  Google Scholar 

  3. Steele AD, Victor JC, Carey ME et al (2019) Experiences with rotavirus vaccines: Can we improve rotavirus vaccine impact in developing countries? Hum Vaccin Immunother 15:1215–1227. https://doi.org/10.1080/21645515.2018.1553593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hallowell BD, Chavers T, Parashar U, Tate JE (2022) Global estimates of rotavirus hospitalizations among children below 5 years in 2019 and current and projected impacts of rotavirus vaccination. J Pediatr Infect Dis Soc 11:149–158. https://doi.org/10.1093/jpids/piab114

    Article  Google Scholar 

  5. Namazova-Baranova LS, Fedoseenko MV, Kalyuzhnaia TA et al (2022) New possibilities of preventive immunization for rotavirus infection in Russian Federation. Overview of the innovative rotavirus vaccine profile. Pediatr Pharmacol 19(6):492–502. https://doi.org/10.15690/pf.v19i6.2489(Article in Russian)

    Article  Google Scholar 

  6. Grinchik PR, Namazova-Baranova LS, Fedoseenko MV et al (2022) Comparative analysis of immunization and immunization coverage in children of Russian Federation federal districts. Pediatr Pharmacol 19:6–19. https://doi.org/10.15690/pf.v18i6.2351(Article in Russian)

    Article  Google Scholar 

  7. Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe DM, Howley PM (eds) Fields Virology, 6th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 1347–1401

    Google Scholar 

  8. Matthijnssens J, Ciarlet M, Rahman M et al (2008) Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch Virol 153:1621–1629. https://doi.org/10.1007/s00705-008-0155-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matthijnssens J, Ciarlet M, Heiman E et al (2008) Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82:3204–3219. https://doi.org/10.1128/JVI.02257-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heiman EM, McDonald SM, Barro M et al (2008) Group A human rotavirus genomics: Evidence that gene constellations are influenced by viral protein interactions. J Virol 82:11106–11116. https://doi.org/10.1128/JVI.01402-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakagomi T, Nakagomi O (1989) RNA-RNA hybridization identifies a human rotavirus that is genetically related to feline rotavirus. J Virol 63:1431–1434. https://doi.org/10.1128/jvi.63.3.1431-1434.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsugawa T, Rainwater-Lovett K, Tsutsumi H (2015) Human G3P[9] rotavirus strains possessing an identical genotype constellation to AU-1 isolated at high prevalence in Brazil, 1997–1999. J Gen Virol 96:590–600. https://doi.org/10.1099/vir.0.071373-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matthijnssens J, De Grazia S, Piessens J et al (2011) Multiple reassortment and interspecies transmission events contribute to the diversity of feline, canine and feline/canine-like human group A rotavirus strains. Infect Genet Evol 11:1396–1406. https://doi.org/10.1016/j.meegid.2011.05.007

    Article  PubMed  Google Scholar 

  14. McDonald SM, McKell AO, Rippinger CM et al (2012) Diversity and relationships of cocirculating modern human rotaviruses revealed using large-scale comparative genomics. J Virol 86:9148–9162. https://doi.org/10.1128/JVI.01105-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang S, McDonald PW, Thompson TA et al (2014) Analysis of human rotaviruses from a single location over an 18-year time span suggests that protein coadaption influences gene constellations. J Virol 88:9842–9863. https://doi.org/10.1128/JVI.01562-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dóró R, Mihalov-Kovács E, Marton S et al (2014) Large-scale whole genome sequencing identifies country-wide spread of an emerging G9P[8] rotavirus strain in Hungary, 2012. Infect Genet Evol 28:495–512. https://doi.org/10.1016/j.meegid.2014.09.016

    Article  CAS  PubMed  Google Scholar 

  17. Dian Z, Wang B, Fan M et al (2017) Completely genomic and evolutionary characteristics of humandominant G9P[8] group A rotavirus strains in Yunnan, China. J Gen Virol 98:1163–1168. https://doi.org/10.1099/jgv.0.000807

    Article  CAS  PubMed  Google Scholar 

  18. Santos FS, Sousa Junior EC, Guerra SFS et al (2019) G1P[8] Rotavirus in children with severe diarrhea in the post-vaccine introduction era in Brazil: Evidence of reassortments and structural modifications of the antigenic VP7 and VP4 regions. Infect Genet Evol 69:255–266. https://doi.org/10.1016/j.meegid.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto SP, Kaida A, Kubo H, Iritani N (2014) Gastroenteritis outbreaks caused by a DS-1-like G1P[8] Rotavirus strain, Japan, 2012–2013. Emerg Infect Dis 20:1030–1033. https://doi.org/10.3201/eid2006.131326

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hoa-Tran TN, Nakagomi T, Vu HM et al (2016) Abrupt emergence and predominance in Vietnam of rotavirus A strains possessing a bovine-like G8 on a DS-1-like background. Arch Virol 161:479–482. https://doi.org/10.1007/s00705-015-2682-x

    Article  CAS  PubMed  Google Scholar 

  21. Hoa-Tran TN, Nakagomi T, Vu HM et al (2020) Detection of three independently-generated DS-1-like G9P[8] reassortant rotavirus A strains during the G9P[8] dominance in Vietnam, 2016–2018. Infect Genet Evol 80:104194. https://doi.org/10.1016/j.meegid.2020.104194

    Article  CAS  PubMed  Google Scholar 

  22. Cowley D, Donato CM, Roczo-Farkas S, Kirkwood CD (2016) Emergence of a novel equine-like G3P[8] inter-genogroup reassortant rotavirus strain associated with gastroenteritis in Australian children. J Gen Virol 97:403–410. https://doi.org/10.1099/jgv.0.000352

    Article  CAS  PubMed  Google Scholar 

  23. Sashina TA, Morozova OV, Epifanova NV, Novikova NA (2020) Genotype constellations of the rotavirus A strains circulating in Nizhny Novgorod, Russia, 2017–2018. Infect Genet Evol 85:104578. https://doi.org/10.1016/j.meegid.2020.104578

    Article  CAS  PubMed  Google Scholar 

  24. Morozova OV, Sashina TA, Novikova NA (2017) Detection and molecular characterization of reassortant DS-1-like G1P [8] strains of rotavirus A. Probl Virol 62:91–96. https://doi.org/10.18821/0507-4088-2017-62-2-91-96(Article in Russian)

    Article  CAS  Google Scholar 

  25. Petrusha OA, Korchevaya ER, Mintaev RR et al (2022) Molecular and genetic characteristics of group A rotaviruses detected in Moscow in 2015–2020. J Microbiol Epidemiol Immunobiol 99(1):7–19. https://doi.org/10.36233/0372-9311-208(Article in Russian)

    Article  Google Scholar 

  26. Novikova NA, Sashina TA, Epifanova NV et al (2020) Long-term monitoring of G1P[8] rotaviruses circulating without vaccine pressure in Nizhny Novgorod, Russia, 1984–2019. Arch Virol 165:865–875. https://doi.org/10.1007/s00705-020-04553-2

    Article  CAS  PubMed  Google Scholar 

  27. Sashina TA, Morozova OV, Epifanova NV, Novikova NA (2019) Identification of rotavirus I- and E-genotypes by multiplex PCR method. Probl Virol 64:140–144. https://doi.org/10.18821/0507-4088-2019-64-3-140-144(Article in Russian)

    Article  CAS  Google Scholar 

  28. Bok K, Matson DO, Gomez JA (2002) Genetic variation of capsid protein VP7 in genotype G4 human rotavirus strains: Simultaneous emergence and spread of different lineages in Argentina. J Clin Microbiol 40:2016–2022. https://doi.org/10.1128/JCM.40.6.2016-2022.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Phan TG, Khamrin P, Quang TD et al (2007) Detection and Genetic Characterization of group A rotavirus strains circulating among children with acute gastroenteritis in Japan. J Virol 81:4645–4653. https://doi.org/10.1128/JVI.02342-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Phan TG, Okitsu S, Maneekarn N, Ushijima H (2007) Genetic heterogeneity, evolution and recombination in emerging G9 rotaviruses. Infect Genet Evol 7:656–663. https://doi.org/10.1016/j.meegid.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  31. da Silva MFM, Gómez MM, Rose TL et al (2013) VP8∗P[8] lineages of group A rotaviruses circulating over 20 years in Brazil: Proposal of six different sub-lineages for P[8]-3 clade. Infect Genet Evol 16:200–205. https://doi.org/10.1016/J.MEEGID.2013.01.004

    Article  PubMed  Google Scholar 

  32. Giammanco GM, Bonura F, Zeller M et al (2014) Evolution of DS-1-like human G2P[4] rotaviruses assessed by complete genome analyses. J Gen Virol 95:91–109. https://doi.org/10.1099/vir.0.056788-0

    Article  CAS  PubMed  Google Scholar 

  33. Doan YH, Nakagomi T, Agbemabiese CA, Nakagomi O (2015) Changes in the distribution of lineage constellations of G2P[4] Rotavirus A strains detected in Japan over 32 years (1980–2011). Infect Genet Evol 34:423–433. https://doi.org/10.1016/J.MEEGID.2015.05.026

    Article  PubMed  Google Scholar 

  34. Pradhan GN, Chitambar SD (2018) Full genomic analysis of G1P[8] rotavirus strains recovered from rotavirus vaccinated and non-vaccinated children hospitalized for acute gastroenteritis in Pune, western India. J Med Virol 90:772–778. https://doi.org/10.1002/jmv.25007

    Article  CAS  PubMed  Google Scholar 

  35. Agbemabiese CA, Nakagomi T, Damanka SA et al (2019) Sub-genotype phylogeny of the non-G, non-P genes of genotype 2 Rotavirus A strains. PLoS ONE 14:e0217422. https://doi.org/10.1371/journal.pone.0217422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Komoto S, Ide T, Negoro M et al (2018) Characterization of unusual DS-1-like G3P[8] rotavirus strains in children with diarrhea in Japan. J Med Virol 90:890–898. https://doi.org/10.1002/jmv.25016

    Article  CAS  PubMed  Google Scholar 

  37. Komoto S, Tacharoenmuang R, Guntapong R et al (2016) Reassortment of human and animal rotavirus gene segments in emerging DS-1-like G1P[8] rotavirus strains. PLoS ONE 11:e0148416. https://doi.org/10.1371/journal.pone.0148416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tacharoenmuang R, Komoto S, Guntapong R et al (2016) Full genome characterization of novel DS-1-like G8P[8] rotavirus strains that have emerged in Thailand: Reassortment of bovine and human rotavirus gene segments in emerging DS-1-like intergenogroup reassortant strains. PLoS ONE 11:e0165826. https://doi.org/10.1371/journal.pone.0165826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arana A, Montes M, Jere KC et al (2016) Emergence and spread of G3P[8] rotaviruses possessing an equine-like VP7 and a DS-1-like genetic backbone in the Basque Country (North of Spain), 2015. Infect Genet Evol 44:137–144. https://doi.org/10.1016/j.meegid.2016.06.048

    Article  PubMed  Google Scholar 

  40. Kamiya H, Tacharoenmuang R, Ide T et al (2019) Characterization of an unusual DS-1-like G8P[8] rotavirus strain from Japan in 2017: Evolution of emerging DS-1-like G8P[8] strains through reassortment. Jpn J Infect Dis 72:256–260. https://doi.org/10.7883/yoken.JJID.2018.484

    Article  CAS  PubMed  Google Scholar 

  41. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. https://doi.org/10.1093/molbev/mss075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Novikova NA, Morozova OV, Fedorova OF et al (2012) Rotavirus infection in children of Nizhny Novgorod, Russia: The gradual change of the virus allele from P[8]-1 to P[8]-3 in the period 1984–2010. Arch Virol 157:2405–2409. https://doi.org/10.1007/s00705-012-1426-4

    Article  CAS  PubMed  Google Scholar 

  44. Sashina TA, Morozova OV, Epifanova NV, Novikova NA (2017) Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch Virol 162:2387–2392. https://doi.org/10.1007/s00705-017-3364-7

    Article  CAS  PubMed  Google Scholar 

  45. Morozova OV, Sashina TA, Epifanova NV et al (2021) Increasing detection of rotavirus G2P[4] strains in Nizhny Novgorod, Russia, between 2016 and 2019. Arch Virol 166:115–124. https://doi.org/10.1007/s00705-020-04853-7

    Article  CAS  PubMed  Google Scholar 

  46. Sashina TA, Morozova OV, Epifanova NV et al (2021) Molecular monitoring of the rotavirus (Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A) strains circulating in Nizhny Novgorod (2012–2020): Detection of the strains with the new genetic features. Probl Virol 66:140–151. https://doi.org/10.36233/0507-4088-46(Article in Russian)

    Article  CAS  Google Scholar 

  47. Morozova OV, Alekseeva AE, Sashina TA et al (2020) Phylodynamics of G4P[8] and G2P[4] strains of rotavirus A isolated in Russia in 2017 based on full-genome analyses. Virus Genes 56:537–545. https://doi.org/10.1007/s11262-020-01771-3

    Article  CAS  PubMed  Google Scholar 

  48. Lu Y, Li H, Li W et al (2020) Characterization of a G9 group A rotavirus reassortant strain detected in Jinzhou, China, in 2018–2019. Arch Virol 165:977–983. https://doi.org/10.1007/s00705-020-04563-0

    Article  CAS  PubMed  Google Scholar 

  49. Phan T, Ide T, Komoto S et al (2020) Unusual mono-reassortant of a Wa-like G1P[8] species A rotavirus containing a DS-1-like (genotype 2) NSP4 gene. Virus Genes 56:638–641. https://doi.org/10.1007/s11262-020-01780-2

    Article  CAS  PubMed  Google Scholar 

  50. Fujii Y, Oda M, Somura Y, Shinkai T (2020) Molecular characteristics of novel mono-reassortant G9P[8] rotavirus a strains possessing the NSP4 gene of the E2 genotype detected in Tokyo, Japan. Jpn J Infect Dis 73:26–35. https://doi.org/10.7883/yoken.JJID.2019.211

    Article  CAS  PubMed  Google Scholar 

  51. Fukuda S, Akari Y, Hatazawa R et al (2022) Rapid spread in Japan of unusual G9P[8] human rotavirus strains possessing NSP4 genes of E2 genotype. Jpn J Infect Dis 75. https://doi.org/10.7883/yoken.JJID.2022.020. :JJID.2022.020

  52. Moutelíková R, Sauer P, Prodělalová J (2020) Whole-genome sequence of a reassortant G9P[4] rotavirus A strain from two children in the Czech Republic. Arch Virol 165:1703–1706. https://doi.org/10.1007/s00705-020-04648-w

    Article  CAS  PubMed  Google Scholar 

  53. Zeng Y, Zhao B, Li T et al (2020) Molecular characterization of an uncommon multigene Reassortant G1P[4] rotavirus identified in China. Infect Genet Evol 85:104413. https://doi.org/10.1016/j.meegid.2020.104413

    Article  CAS  PubMed  Google Scholar 

  54. Maringa WM, Simwaka J, Mwangi PN et al (2021) Whole genome analysis of human rotaviruses reveals single gene reassortant rotavirus strains in Zambia. Viruses 13:1872. https://doi.org/10.3390/v13091872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rasebotsa S, Uwimana J, Mogotsi MT et al (2021) Whole-genome analyses identifies multiple reassortant rotavirus strains in Rwanda post-vaccine introduction. Viruses 13:1–15. https://doi.org/10.3390/v13010095

    Article  CAS  Google Scholar 

  56. Jere KC, Chaguza C, Bar-Zeev N et al (2018) Emergence of double- and triple-gene reassortant G1P[8] rotaviruses possessing a DS-1-like backbone after rotavirus vaccine introduction in Malawi. J Virol 92(3):e01246–e01217. https://doi.org/10.1128/JVI.01246-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perkins C, Mijatovic-Rustempasic S, Ward ML et al (2017) Genomic characterization of the first equine-like G3P[8] rotavirus strain detected in the United States. Genome Announc 47:e01341–e01317. https://doi.org/10.1128/genomeA.01341-17

    Article  Google Scholar 

  58. Pietsch C, Liebert UG (2018) Molecular characterization of different equine-like G3 rotavirus strains from Germany. Infect Genet Evol 57:46–50. https://doi.org/10.1016/j.meegid.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  59. Kikuchi W, Nakagomi T, Gauchan P et al (2018) Detection in Japan of an equine-like G3P[8] reassortant rotavirus A strain that is highly homologous to European strains across all genome segments. Arch Virol 163:791–794. https://doi.org/10.1007/s00705-017-3668-7

    Article  CAS  PubMed  Google Scholar 

  60. Luchs A, Da Costa AC, Cilli A et al (2019) Spread of the emerging equine-like G3P[8] DS-1-like genetic backbone rotavirus strain in Brazil and identification of potential genetic variants. J Gen Virol 100:7–25. https://doi.org/10.1099/jgv.0.001171

    Article  CAS  PubMed  Google Scholar 

  61. Guerra SFS, Soares LS, Lobo PS et al (2016) Detection of a novel equine-like G3 rotavirus associated with acute gastroenteritis in Brazil. J Gen Virol 97:3131–3138. https://doi.org/10.1099/jgv.0.000626

    Article  CAS  PubMed  Google Scholar 

  62. Dóró R, Marton S, Bartókné AH et al (2016) Equine-like G3 rotavirus in Hungary, 2015 - Is it a novel intergenogroup reassortant pandemic strain? Acta Microbiol Immunol Hung 63:243–255. https://doi.org/10.1556/030.63.2016.2.8

    Article  PubMed  Google Scholar 

  63. Hoa-Tran TN, Nakagomi T, Vu HM et al (2019) Whole genome characterization of feline-like G3P[8] reassortant rotavirus A strains bearing the DS-1-like backbone genes detected in Vietnam, 2016. Infect Genet Evol 73:1–6. https://doi.org/10.1016/j.meegid.2019.04.007

    Article  CAS  PubMed  Google Scholar 

  64. Esposito S, Camilloni B, Bianchini S et al (2019) First detection of a reassortant G3P[8] rotavirus A strain in Italy: A case report in an 8-year-old child. Virol J 16:64. https://doi.org/10.1186/s12985-019-1173-1

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moutelíková R, Sauer P, Dvořáková Heroldová M et al (2019) Emergence of rare bovine–human reassortant DS-1-like Rotavirus A strains with G8P[8] genotype in human patients in the Czech Republic. Viruses 11:1015. https://doi.org/10.3390/v11111015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bonura F, Bányai K, Mangiaracina L et al (2022) Emergence in 2017–2019 of novel reassortant equine-like G3 rotavirus strains in Palermo, Sicily. Transbound Emerg Dis 69:813–835. https://doi.org/10.1111/tbed.14054

    Article  CAS  PubMed  Google Scholar 

  67. Utsumi T, Wahyuni RM, Doan YH et al (2018) Equine-like G3 rotavirus strains as predominant strains among children in Indonesia in 2015–2016. Infect Genet Evol 61:224–228. https://doi.org/10.1016/j.meegid.2018.03.027

    Article  CAS  PubMed  Google Scholar 

  68. Athiyyah AF, Utsumi T, Wahyuni RM et al (2019) Molecular epidemiology and clinical features of rotavirus infection among pediatric patients in East Java, Indonesia during 2015–2018: Dynamic changes in rotavirus genotypes from equine-like G3 to typical human G1/G3. Front Microbiol 10:940. https://doi.org/10.3389/fmicb.2019.00940

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tacharoenmuang R, Komoto S, Guntapong R et al (2020) High prevalence of equine-like G3P[8] rotavirus in children and adults with acute gastroenteritis in Thailand. J Med Virol 92:174–186. https://doi.org/10.1002/jmv.25591

    Article  CAS  PubMed  Google Scholar 

  70. Roczo-Farkas S, Bines JE (2021) Australian rotavirus surveillance program: Annual report, 2018. Commun Dis Intell 45. https://doi.org/10.33321/cdi.2021.45.6

  71. Chia G, Ho HJ, Ng CG et al (2018) An unusual outbreak of rotavirus G8P[8] gastroenteritis in adults in an urban community, Singapore, 2016. J Clin Virol 105:57–63. https://doi.org/10.1016/j.jcv.2018.06.004

    Article  PubMed  Google Scholar 

  72. Kondo K, Tsugawa T, Ono M et al (2017) Clinical and molecular characteristics of human rotavirus G8P[8] outbreak strain, Japan, 2014. Emerg Infect Dis 23:968–972. https://doi.org/10.3201/eid2306.160038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Phan T, Kobayashi M, Nagasawa K et al (2022) Whole genome sequencing and evolutionary analysis of G8P[8] rotaviruses emerging in Japan. Virus Disease 33:215–218. https://doi.org/10.1007/s13337-022-00765-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mwangi PN, Mogotsi MT, Rasebotsa SP et al (2020) Uncovering the first atypical DS-1-like G1P[8] rotavirus strains that circulated during pre-rotavirus vaccine introduction era in South Africa. Pathogens 9(5):391. https://doi.org/10.3390/pathogens9050391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Martella V, Potgieter AC, Lorusso E et al (2011) A feline rotavirus G3P[9] carries traces of multiple reassortment events and resembles rare human G3P[9] rotaviruses. J Gen Virol 92:1214–1221. https://doi.org/10.1099/vir.0.027425-0

    Article  CAS  PubMed  Google Scholar 

  76. Fredj MBH, Heylen E, Zeller M et al (2013) Feline origin of rotavirus strain, Tunisia, 2008. Emerg Infect Dis 19:630–634. https://doi.org/10.3201/eid1904.121383

    Article  PubMed Central  Google Scholar 

  77. Jeong S, Than VT, Lim I, Kim W (2014) Whole-genome analysis of a rare human Korean G3P[9] rotavirus strain suggests a complex evolutionary origin potentially involving reassortment events between feline and bovine rotaviruses. PLoS ONE 9:1–8. https://doi.org/10.1371/journal.pone.0097127

    Article  CAS  Google Scholar 

  78. Mladenova Z, Nawaz S, Ganesh B, Iturriza-Gomara M (2015) Increased detection of G3P[9] and G6P[9] rotavirus strains in hospitalized children with acute diarrhea in Bulgaria. Infect Genet Evol 29:118–126. https://doi.org/10.1016/j.meegid.2014.11.011

    Article  PubMed  Google Scholar 

  79. Mijatovic-Rustempasic S, Roy S, Sturgeon M et al (2014) Full-genome sequence of a rare human G3P[9] rotavirus strain. Genome Announc 2:9–10. https://doi.org/10.1128/genomeA.00143-14

    Article  Google Scholar 

  80. Gauchan P, Sasaki E, Nakagomi T et al (2015) Whole genotype constellation of prototype feline rotavirus strains FRV-1 and FRV64 and their phylogenetic relationships with feline-like human rotavirus strains. J Gen Virol 96:338–350. https://doi.org/10.1099/vir.0.070771-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing and by Russian Foundation for Basic Research (project no. 18-34-00586).

Author information

Authors and Affiliations

Authors

Contributions

TAS conceived and designed the experiments. TAS, EIV, OVM, and NVE performed the experiments. TAS and EIV analyzed the data. TAS and NAN wrote the manuscript. All authors revised and approved the final version of the manuscript.

Corresponding author

Correspondence to Tatiana A. Sashina.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was approved by the Ethics Committee of the I.N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. The patient identities were de-linked from their unique laboratory identifiers to ensure confidentiality.

Additional information

Communicated by Tim Skern

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sashina, T.A., Velikzhanina, E.I., Morozova, O.V. et al. Detection and full-genotype determination of rare and reassortant rotavirus A strains in Nizhny Novgorod in the European part of Russia. Arch Virol 168, 215 (2023). https://doi.org/10.1007/s00705-023-05838-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05838-y

Key words

Navigation