Skip to main content
Log in

Phylodynamic characteristics of reassortant DS-1-like G3P[8]-strains of rotavirus type A isolated in Nizhny Novgorod (Russia)

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Since 2013, there has been an increase in reports of the spread of a double intergroup reassortant strain of rotavirus type A (RVA) with the genotype G3P[8] and other genes belonging to the second genogroup I2-R2-C2-M2-A2-N2-T2-E2-H2. In our study, we provide a molecular genetic characterization of rotaviruses with genotype G3P[8]-I2 isolated in Nizhny Novgorod. In our study, we used RT-PCR, Sanger sequencing, RNA-PAGE methods. Phylogenetic and phylodynamic analysis were performed using the Bayesian approach. According to our study, there was a significant increase in the proportion of G3P[8] from 15% during the period of 2020–2021 to 53% during the period of 2021–2022 in Nizhny Novgorod, Russia. Phylogenetic analysis based on the VP4 gene revealed that DS-1-like RVAs isolated in Nizhny Novgorod belong to different clusters of the P[8]-3.1 lineage, with a level of variation ranging from 1.1% to 1.3%. Based on the VP6 gene, the equine-like RVAs identified by us carry genetic variants belonging to three distinct clusters of the lineage I2-V, with a variation level ranging from 2.0% to 4.5%. These data indicate the genotypic diversity of circulating DS-1-like G3 RVAs. Phylogenetic analysis of the VP7 gene allowed us to assign the isolates identified in our study to the G3-1 lineage. We estimated that the circulation of the most recent common ancestor of the spreading strains dates back to 2002. Additionally, we determined the typical level of mutations in the VP7 gene, which amounted to 2.14*10–3 substitutions/per site/per year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister JR et al (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156(8):1397–1413. https://doi.org/10.1007/s00705-011-1006-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matthijnssens J, Van Ranst M (2012) Genotype constellation and evolution of group A rotaviruses infecting humans. Curr Opin Virol 2(4):426–433. https://doi.org/10.1016/j.coviro.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  3. Santos N, Hoshino Y (2005) Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol 15(1):29–56. https://doi.org/10.1002/rmv.448

    Article  PubMed  Google Scholar 

  4. Dóró R, László B, Martella V, Leshem E, Gentsch J, Parashar U, Bányai K (2014) Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect Genet Evol 28:446–461. https://doi.org/10.1016/j.meegid.2014.08.017

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sashina TA, Morozova OV, Epifanova NV, Kashnikov AU, Leonov AV, Novikova NA (2021) Molecular monitoring of the rotavirus (Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A) strains circulating in Nizhny Novgorod (2012-2020): detection of the strains with the new genetic features. Vopr Virusol (Probl Virol Russ J) 66(2):140–151. https://doi.org/10.36233/0507-4088-46. (In Russ)

    Article  CAS  Google Scholar 

  6. Heiman EM, McDonald SM, Barro M, Taraporewala ZF, Bar-Magen T, Patton JT (2008) Group A human rotavirus genomics: evidence that gene constellations are influenced by viral protein interactions. J Virol 82:11106–11116. https://doi.org/10.1128/JVI.01402-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, Mc-Donald SM et al (2008) Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82(7):3204–3219. https://doi.org/10.1128/JVI.02257-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McDonald SM, Matthijnssens J, McAllen JK, Hine E, Overton L, Wang S et al (2009) Evolutionary dynamics of human rotaviruses: balancing reassortment with preferred genome constellations. PLoS Pathog 5:e1000634. https://doi.org/10.1371/journal.ppat.1000634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamamoto SP, Kaida A, Kubo H, Iritani N (2014) Gastroenteritis outbreaks caused by a DS-1–like G1P[8] rotavirus strain, Japan, 2012–2013. Emerg Infect Dis 20(6):1030–1033. https://doi.org/10.3201/eid2006.131326

    Article  PubMed  PubMed Central  Google Scholar 

  10. Komoto S, Tacharoenmuang R, Guntapong R, Ide T, Haga K, Katayama K et al (2015) Emergence and characterization of unusual DS-1-Like G1P[8] rotavirus strains in children with diarrhea in Thailand. PLoS ONE 10(11):e0141739. https://doi.org/10.1371/journal.pone.0141739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakagomi T, Nguyen MQ, Gauchan P, Agbemabiese CA, Kaneko M, Do LP et al (2017) Evolution of DS-1-like G1P[8] double-gene reassortant rotavirus A strains causing gastroenteritis in children in Vietnam in 2012/2013. Arch Virol 162(3):739–748. https://doi.org/10.1007/s00705-016-3155-6

    Article  CAS  PubMed  Google Scholar 

  12. Jere KC, Chaguza C, Bar-Zeev N, Lowe J, Peno C, Kumwenda B et al (2018) Emergence of double- and triple-gene reassortant G1P[8] rotaviruses possessing a DS-1-like backbone after rotavirus vaccine introduction in Malawi. J Virol 92(3):e01246-17. https://doi.org/10.1128/JVI.01246-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luchs A, da Costa AC, Cilli A et al (2019) First detection of DS-1-like G1P[8] double-gene reassortant rotavirus strains on the American Continent, Brazil, 2013. Sci Rep 9:2210. https://doi.org/10.1038/s41598-019-38703-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morozova OV, Sashina TA, Novikova NA (2017) Detection and molecular characterization of reassortant DS-1-like G1P[8] strains of rotavirus A. Vopr Virusol (Probl Virol Russ J) 62(2):91–96. https://doi.org/10.18821/0507-4088-2017-62-2-91-96. (In Russ)

    Article  CAS  Google Scholar 

  15. Cowley D, Donato CM, Roczo-Farkas S, Kirkwood CD (2016) Emergence of a novel equine-like G3P[8] inter-genogroup reassortant rotavirus strain associated with gastroenteritis in Australian children. J Gen Virol 97(2):403–410. https://doi.org/10.1099/jgv.0.000352

    Article  CAS  PubMed  Google Scholar 

  16. Tacharoenmuang R, Komoto S, Guntapong R, Upachai S, Singchai P, Ide T et al (2020) High prevalence of equine-like G3P[8] rotavirus in children and adults with acute gastroenteritis in Thailand. J Med Virol 92(2):174–186. https://doi.org/10.1002/jmv.25591

    Article  CAS  PubMed  Google Scholar 

  17. Petrusha OA, Korchevaya ER, Minyaev RR, Nikonova AA, Isakov IYu, Meskina ER, Ushakova AY, Khadisova MK, Zverev VV, Faizuloev EB (2022) Molecular and genetic characteristics of group A rotaviruses detected in Moscow in 2015–2020. J Microbiol Epidemiol Immunobiol 99(1):7–19. https://doi.org/10.36233/0372-9311-208

    Article  Google Scholar 

  18. Cowley D, Nirwati H, Donato CM, Bogdanovic-Sakran N, Boniface K, Kirkwood CD, Bines JE (2018) Molecular characterisation of rotavirus strains detected during a clinical trial of the human neonatal rotavirus vaccine (RV3-BB) in Indonesia. Vaccine 36(39):5872–5878. https://doi.org/10.1016/j.vaccine.2018.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amit LN, Mori D, John JL, Chin AZ, Mosiun AK, Jeffree MS, Ahmed K (2021) Emergence of equine-like G3 strains as the dominant rotavirus among children under five with diarrhea in Sabah, Malaysia during 2018–2019. PLoS ONE 16(7):e0254784. https://doi.org/10.1371/journal.pone.0254784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fujii Y, Oda M, Somura Y, Shinkai T (2020) Molecular Characteristics of novel mono-reassortant G9P[8] rotavirus A strains possessing the NSP4 gene of the E2 genotype detected in Tokyo, Japan. Jpn J Infect Dis 73(1):26–35. https://doi.org/10.7883/yoken.JJID.2019.211

    Article  CAS  PubMed  Google Scholar 

  21. Gutierrez MB, Fialho AM, Maranhão AG, Malta FC, Andrade JDSR, Assis RMS et al (2020) Rotavirus A in Brazil: molecular epidemiology and surveillance during 2018–2019. Pathogens 9(7):515. https://doi.org/10.3390/pathogens9070515

    Article  PubMed  PubMed Central  Google Scholar 

  22. Arana A, Montes M, Jere KC, Alkorta M, Iturriza-Gómara M, Cilla G (2016) Emergence and spread of G3P[8] rotaviruses possessing an equine-like VP7 and a DS-1-like genetic backbone in the Basque Country (North of Spain), 2015. Infect Genet Evol 44:137–144. https://doi.org/10.1016/j.meegid.2016.06.048

    Article  PubMed  Google Scholar 

  23. Bonura F, Bányai K, Mangiaracina L, Bonura C, Martella V, Giammanco GM, De Grazia S (2022) Emergence in 2017–2019 of novel reassortant equine-like G3 rotavirus strains in Palermo, Sicily. Transbound Emerg Dis 69(2):813–835. https://doi.org/10.1111/tbed.14054

    Article  CAS  PubMed  Google Scholar 

  24. Salamunova S, Jackova A, Csank T, Mandelik R, Novotny J, Beckova Z et al (2020) Genetic variability of pig and human rotavirus group A isolates from Slovakia. Arch Virol 165(2):463–470. https://doi.org/10.1007/s00705-019-04504-6

    Article  CAS  PubMed  Google Scholar 

  25. Pietsch C, Liebert UG (2018) Molecular characterization of different equine-like G3 rotavirus strains from Germany. Infect Genet Evol 57:46–50. https://doi.org/10.1016/j.meegid.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  26. Dóró R, Marton S, Bartókné AH, Lengyel G, Agócs Z, Jakab F, Bányai K (2016) Equine-like G3 rotavirus in Hungary, 2015 - Is it a novel intergenogroup reassortant pandemic strain? Acta Microbiol Immunol Hung 63(2):243–255. https://doi.org/10.1556/030.63.2016.2.8

    Article  PubMed  Google Scholar 

  27. Durmaz R, Bakkaloglu Z, Unaldi O, Karagoz A, Korukluoglu G, Kalaycioglu AT (2018) Prevalence and diversity of rotavirus A genotypes cirulating in Turkey during a 2-year sentinel surveillance period, 2014–2016. J Med Virol 90(2):229–238. https://doi.org/10.1002/jmv.24945

    Article  CAS  PubMed  Google Scholar 

  28. Kuang X, Gong X, Zhang X, Pan H, Teng Z (2020) Genetic diversity of group A rotavirus in acute gastroenteritis outpatients in Shanghai from 2017 to 2018. BMC Infect Dis 20(1):596. https://doi.org/10.1186/s12879-020-05279-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mwanga MJ, Owor BE, Ochieng JB, Ngama MH, Ogwel B, Onyango C et al (2020) Rotavirus group A genotype circulation patterns across Kenya before and after nationwide vaccine introduction, 2010–2018. BMC Infect Dis 20(1):504. https://doi.org/10.1186/s12879-020-05230-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalica AR, Greenberg HB, Espejo RT, Flores J, Wyatt RG, Kapikian AZ, Chanock RM (1981) Distinctive ribonucleic acid patterns of human rotavirus subgroups 1 and 2. Infect Immun 33(3):958–961. https://doi.org/10.1128/iai.33.3.958-961.1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sashina TA, Velikzhanina EI, Morozova OV, Epifanova NV, Novikova NA (2023) Detection and full-genotype determination of rare and reassortant rotavirus A strains in Nizhny Novgorod in the European part of Russia. Arch Virol 168(8):215. https://doi.org/10.1007/s00705-023-05838-y

    Article  CAS  PubMed  Google Scholar 

  32. Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J et al (1992) Identification of group A rotavirus gene 4 types by polymerase chain reaction. J Clin Microbiol 30:1365–1373. https://doi.org/10.1128/jcm.30.6.1365-1373.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gouvea V, Glass RI, Woods P, Taniguchi K, Clark HF, Forrester B, Fang ZY (1990) Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool specimens. J Clin Microbiol 28:276–282. https://doi.org/10.1128/jcm.28.2.276-282.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iturriza-Gomara M, Isherwood B, Desselberger U, Gray J (2001) Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J Virol 75:3696–3705. https://doi.org/10.1128/JVI.75.8.3696-3705.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iturriza-Gomara M, Kang G, Gray J (2004) Rotavirus genotyping: keeping up with an evolving population of human rotaviruses. J Clin Virol 31(4):259–265. https://doi.org/10.1016/j.jcv.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  36. Maunula L, von Bonsdorff CH (1998) Short sequences define genetic lineages: phylogenetic analysis of group A rotaviruses based on partial sequences of genome segments 4 and 9. J Gen Virol 79(Pt 2):321–332. https://doi.org/10.1099/0022-1317-79-2-321

    Article  CAS  PubMed  Google Scholar 

  37. Novikova NA, Sashina TA, Epifanova NV et al (2020) Long-term monitoring of G1P[8] rotaviruses circulating without vaccine pressure in Nizhny Novgorod, Russia, 1984–2019. Arch Virol 165:865–875. https://doi.org/10.1007/s00705-020-04553-2

    Article  CAS  PubMed  Google Scholar 

  38. Herring AJ, Inglis NF, Ojeh CK, Snodgrass DR, Menzies JD (1982) Rapid diagnosis of rotavirus infection by direct detection of viral nucleic-acid in silver-stained polyacrylamide gels. J Clin Microbiol 16:473–477. https://doi.org/10.1128/jcm.16.3.473-477.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  40. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4:vey016. https://doi.org/10.1093/ve/vey016

    Article  PubMed  PubMed Central  Google Scholar 

  42. da Silva MF, Gómez MM, Rose TL, Volotão Ede M, Carvalho-Costa FA, Bello G, Leite JP (2013) VP8*P[8] lineages of group A rotaviruses circulating over 20 years in Brazil: proposal of six different sub-lineages for P[8]-3 clade. Infect Genet Evol 16:200–205. https://doi.org/10.1016/j.meegid.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  43. Doan YH, Nakagomi T, Agbemabiese CA, Nakagomi O (2015) Changes in the distribution of lineage constellations of G2P[4] Rotavirus A strains detected in Japan over 32 years (1980–2011). Infect Genet Evol 34:423–433. https://doi.org/10.1016/j.meegid.2015.05.026

    Article  PubMed  Google Scholar 

  44. Wang YH, Pang BB, Ghosh S, Zhou X, Shintani T, Urushibara N, Song YW, He MY, Liu MQ, Tang WF, Peng JS, Hu Q, Zhou DJ, Kobayashi N (2014) Molecular epidemiology and genetic evolution of the whole genome of G3P[8] human rotavirus in Wuhan, China, from 2000 through 2013. PLoS One 9(3):e88850. https://doi.org/10.1371/journal.pone.0088850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bielejec F, Baele G, Vrancken B, Suchard MA, Rambaut A, Lemey P (2016) SpreaD3: interactive visualisation of spatiotemporal history and trait evolutionary processes. Mol Biol Evol 33(8):2167–2169. https://doi.org/10.1093/molbev/msw082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yuzhakov A, Yuzhakova K, Kulikova N, Kisteneva L, Cherepushkin S, Smetanina S, Bazarova M, Syroeshkin A, Grebennikova T (2021) Prevalence and genetic diversity of group A rotavirus genotypes in Moscow (2019–2020). Pathogens 10(6):674. https://doi.org/10.3390/pathogens10060674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ivashechkin AA, Yuzhakov AG, Grebennikova TV, Yuzhakova KA, Kulikova NY, Kisteneva LB, Smetanina SV, Bazarova MV, Almazova MG (2020) Genetic diversity of group A rotaviruses in Moscow in 2018–2019. Arch Virol 165(3):691–702. https://doi.org/10.1007/s00705-020-04534-5

    Article  CAS  PubMed  Google Scholar 

  48. Tate JE, Burton AH, Boschi-Pinto C, Parashar UD, World Health Organization–Coordinated Global Rotavirus Surveillance Network (2016) Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000-2013. Clin Infect Dis 1(62):S96–S105. https://doi.org/10.1093/cid/civ1013

    Article  Google Scholar 

  49. Rychkova OA, Grakhova MA, Sagitova AS, Kozhevnikova LA, Starostina OV, Kuzmichyova KP (2018) Rotavirus infection. the possibilities of timely vaccination. Med Counc 17:215–220. https://doi.org/10.21518/2079-701X-2018-17-215-219. (In Russ)

    Article  Google Scholar 

  50. Maguire JE, Glasgow K, Glass K, Roczo-Farkas S, Bines JE, Sheppeard V, Macartney K, Quinn HE (2019) Rotavirus epidemiology and monovalent rotavirus vaccine effectiveness in Australia: 2010–2017. Pediatrics 144(4):e20191024. https://doi.org/10.1542/peds.2019-1024

    Article  PubMed  Google Scholar 

  51. Seheri LM, Magagula NB, Peenze I, Rakau K, Ndadza A, Mwenda JM, Weldegebriel G, Steele AD, Mphahlele MJ (2018) Rotavirus strain diversity in Eastern and Southern African countries before and after vaccine introduction. Vaccine 36(47):7222–7230. https://doi.org/10.1016/j.vaccine.2017.11.068

    Article  CAS  PubMed  Google Scholar 

  52. Mhango C, Mandolo JJ, Chinyama E, Wachepa R, Kanjerwa O, Malamba-Banda C, Matambo PB, Barnes KG, Chaguza C, Shawa IT, Nyaga MM, Hungerford D, Parashar UD, Pitzer VE, Kamng’ona AW, Iturriza-Gomara M, Cunliffe NA, Jere KC (2022) Rotavirus genotypes in hospitalized children with acute gastroenteritis before and after rotavirus vaccine introduction in Blantyre, Malawi, 1997–2019. J Infect Dis 225(12):2127–2136. https://doi.org/10.1093/infdis/jiaa616

    Article  CAS  PubMed  Google Scholar 

  53. Hoque SA, Khandoker N, Thongprachum A, Khamrin P, Takanashi S, Okitsu S, Nishimura S, Kikuta H, Yamamoto A, Sugita K, Baba T, Kobayashi M, Hayakawa S, Mizuguchi M, Maneekarn N, Ushijima H (2020) Distribution of rotavirus genotypes in Japan from 2015 to 2018: diversity in genotypes before and after introduction of rotavirus vaccines. Vaccine 38(23):3980–3986. https://doi.org/10.1016/j.vaccine.2020.03.061

    Article  CAS  PubMed  Google Scholar 

  54. Nakagomi T (2020) Vaccine effectiveness against DS-1-like rotavirus strains. Emerg Infect Dis 26(1):184. https://doi.org/10.3201/eid2601.191377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jere KC, Bar-Zeev N, Chande A, Bennett A, Pollock L, Sanchez-Lopez PF, Nakagomi O, Tate JE, Parashar UD, Heyderman RS, French N, Iturriza-Gomara M, Cunliffe NA (2019) Vaccine effectiveness against DS-1-like rotavirus strains in infants with acute gastroenteritis, Malawi, 2013–2015. Emerg Infect Dis 25(9):1734–1737. https://doi.org/10.3201/eid2509.190258

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fukuda S, Tacharoenmuang R, Guntapong R, Upachai S, Singchai P, Ide T, Hatazawa R, Sutthiwarakom K, Kongjorn S, Onvimala N, Ruchusatsawast K, Rungnopakun P, Mekmallika J, Kawamura Y, Motomura K, Tatsumi M, Takeda N, Murata T, Yoshikawa T, Uppapong B, Taniguchi K, Komoto S (2020) Full genome characterization of novel DS-1-like G9P[8] rotavirus strains that have emerged in Thailand. PLoS One 15(4):e0231099. https://doi.org/10.1371/journal.pone.0231099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jenkins GM, Rambaut A, Pybus OG, Holmes EC (2002) Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54(2):156–165. https://doi.org/10.1007/s00239-001-0064-3

    Article  CAS  PubMed  Google Scholar 

  58. Matthijnssens J, Heylen E, Zeller M, Rahman M, Lemey P, Van Ranst M (2010) Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol Biol Evol 27(10):2431–2436. https://doi.org/10.1093/molbev/msq137

    Article  CAS  PubMed  Google Scholar 

  59. Morozova OV, Alekseeva AE, Sashina TA, Brusnigina NF, Epifanova NV, Kashnikov AU, Zverev VV, Novikova NA (2020) Phylodynamics of G4P[8] and G2P[4] strains of rotavirus A isolated in Russia in 2017 based on full-genome analyses. Virus Genes 56(5):537–545. https://doi.org/10.1007/s11262-020-01771-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Morozova.

Ethics declarations

Ethical approval

This original article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Mauricio Nogueira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, O.V., Sashina, T.A., Epifanova, N.V. et al. Phylodynamic characteristics of reassortant DS-1-like G3P[8]-strains of rotavirus type A isolated in Nizhny Novgorod (Russia). Braz J Microbiol 54, 2867–2877 (2023). https://doi.org/10.1007/s42770-023-01155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01155-3

Keywords

Navigation