Skip to main content
Log in

Characterization of a novel mycotombus-like virus from the plant-pathogenic fungus Phoma matteucciicola

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Here, we report a novel mycotombus-like mycovirus, tentatively named "Phoma matteucciicola RNA virus 2" (PmRV2), derived from the phytopathogenic fungus Phoma matteucciicola strain HNQH1. The complete PmRV2 genome is comprised of a positive-sense single-stranded RNA (+ssRNA) of 3,460 nucleotides (nt) with a GC content of 56.71%. Sequence analysis of PmRV2 indicated the presence of two noncontiguous open reading frames (ORFs) encoding a hypothetical protein and an RNA-dependent RNA polymerase (RdRp), respectively. PmRV2 contains a metal-binding ‘GDN’ triplet in motif C of RdRp, while most +ssRNA mycoviruses contained a ‘GDD’ motif in the same region. A BLASTp search showed that the RdRp amino acid sequence of PmRV2 was most closely related to the RdRp of Macrophomina phaseolina umbra-like virus 1 (50.72% identity) and Erysiphe necator umbra-like virus 2 (EnUlV2, 44.84% identity). Phylogenetic analysis indicated that PmRV2 grouped together with EnUlV2 within the recently proposed family "Mycotombusviridae".

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hollings M (1962) Viruses associated with a die-back disease of cultivated mushroom. Nature 196:962–965

    Article  Google Scholar 

  2. Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479–480:356–368

    Article  PubMed  Google Scholar 

  3. Kondo H, Hisano S, Chiba S, Maruyama K, Andika IB, Toyoda K, Fujimori F, Suzuki N (2016) Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi. Virus Res 213:353–364

    Article  CAS  PubMed  Google Scholar 

  4. Marzano SL, Domier LL (2016) Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes. Virus Res 213:332–342

    Article  CAS  PubMed  Google Scholar 

  5. Kondo H, Botella L, Suzuki N (2022) Mycovirus diversity and evolution revealed/inferred from recent studies. Annu Rev Phytopathol 60:14.1-14.30

    Article  Google Scholar 

  6. Zhou J, Wang Y, Liang X, Xie C, Liu W, Miao W, Kang Z, Zheng L (2020) Molecular characterization of a novel ourmia-like virus infecting Phoma matteucciicola. Viruses 12:231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Donaire L, Pagán I, Ayllón M (2016) Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses. Virology 499:212–218

    Article  CAS  PubMed  Google Scholar 

  8. Sato Y, Shamsi W, Jamal A, Bhatti MF, Kondo H, Suzuki N (2020) Hadaka virus 1: a capsidless eleven-segmented positive-sense single-stranded RNA virus from a phytopathogenic fungus, Fusarium oxysporum. MBio 11:e00450-520

    Article  Google Scholar 

  9. Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, Huang J, Yi X (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci USA 107:8387–8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou J, Hu X, Liang X, Wang Y, Xie C, Zheng L (2021) Complete genome sequence of a novel mycovirus from Phoma matteucciicola. Arch Virol 166:317–320

    Article  CAS  PubMed  Google Scholar 

  11. Zheng L, Shu C, Zhang M, Yang M, Zhou E (2019) Molecular characterization of a novel endornavirus conferring hypovirulence in rice sheath blight fungus Rhizoctonia solani AG-1 IA strain GD-2. Viruses 11:178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anagnostakis SL (1982) Biological control of chestnut blight. Science 215:466–471

    Article  CAS  PubMed  Google Scholar 

  13. Rigling D, Prospero S (2018) Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol Plant Pathol 19:7–20

    Article  CAS  PubMed  Google Scholar 

  14. Zheng F, Xu G, Zhou J, Xie C, Cui H, Miao W, Kang Z, Zheng L (2019) Complete genomic sequence and organization of a novel mycovirus from Phoma matteucciicola strain LG915. Arch Virol 164:2209–2213

    Article  CAS  PubMed  Google Scholar 

  15. Zheng F, Ma R, Xu G, Zheng F, Ding X, Xie C (2018) Leaf blight on Curcuma wenyujin caused by Phoma matteucciicola in China. Plant Dis 102:2042

    Article  Google Scholar 

  16. Morris TJ, Dodds JA (1979) Isolation and analysis of double stranded RNA from virus-infected plant and fungal tissue. Phytopathology 69:854–858

    Article  CAS  Google Scholar 

  17. Lin Y, Zhou J, Zhou X, Shuai S, Zhou R, An H, Fang S, Zhang S, Deng Q (2020) A novel narnavirus from the plant-pathogenic fungus Magnaporthe oryzae. Arch Virol 165:1235–1240

    Article  CAS  PubMed  Google Scholar 

  18. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vázquez AL, Alonso JM, Parra F (2000) Mutation analysis of the GDD sequence motif of a calicivirus RNAdependent RNA polymerase. J Virol 74:3888–3891

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by Hainan Province Key R&D Project (No. ZDYF2022XDNY242), the National Natural Science Foundation of China (No. 32260648), the Scientific Research Foundation for Advanced Talents, Hainan University (No. KYQD(ZR)1873), the Leading Talent Project of Main Discipline Leaders in Jiangxi Province (No. 20213BCJL22046), and the Key Projects of Jiangxi Natural Science Foundation (No. 20202ACBL205006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zheng.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals or human participants performed by any of the authors.

Additional information

Handling Editor: Nobuhiro Suzuki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Chen, D., Fu, Y. et al. Characterization of a novel mycotombus-like virus from the plant-pathogenic fungus Phoma matteucciicola. Arch Virol 168, 103 (2023). https://doi.org/10.1007/s00705-023-05714-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05714-9

Navigation