Skip to main content

Advertisement

Log in

Isolation of a novel rhabdovirus and detection of multiple novel viral sequences in Culex species mosquitoes in the United States

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

To increase our understanding of the diversity of the mosquito virome, 6956 mosquitoes of five species (Culex erraticus, Culex pipiens, Culex restuans, Culex tarsalis, and Culex territans) collected in Iowa in the United States in 2017 and 2020 were assayed for novel viruses by performing polyethylene glycol precipitation, virus isolation in cell culture, and unbiased high-throughput sequencing. A novel virus, provisionally named “Walnut Creek virus”, was isolated from Cx. tarsalis, and its genomic sequence and organization are characteristic of viruses in the genus Hapavirus (family Rhabdoviridae). Replication of Walnut Creek virus occurred in avian, mammalian, and mosquito, but not tick, cell lines. A novel virus was also isolated from Cx. restuans, and partial genome sequencing revealed that it is distantly related to an unclassified virus of the genus Phytoreovirus (family Sedoreoviridae). Two recognized viruses were also isolated: Culex Y virus (family Birnaviridae) and Houston virus (family Mesoniviridae). We also identified sequences of eight novel viruses from six families (Amalgaviridae, Birnaviridae, Partitiviridae, Sedoreoviridae, Tombusviridae, and Totiviridae), two viruses that do not belong to any established families, and many previously recognized viruses. In summary, we provide evidence of multiple novel and recognized viruses in Culex spp. mosquitoes in the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All sequences generated in this study have been submitted to the GenBank database.

References

  1. Greninger AL (2018) A decade of RNA virus metagenomics is (not) enough. Virus Res 244:218–229

    Article  CAS  Google Scholar 

  2. Walker PJ, Blasdell KR, Calisher CH, Dietzgen RG, Kondo H, Kurath G et al (2018) ICTV virus taxonomy profile: Rhabdoviridae. J Gen Virol 99(4):447–448

    Article  CAS  Google Scholar 

  3. Dietzgen RG, Kondo H, Goodin MM, Kurath G, Vasilakis N (2017) The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res 227:158–170

    Article  CAS  Google Scholar 

  4. Whitfield AE, Huot OB, Martin KM, Kondo H, Dietzgen RG (2018) Plant rhabdoviruses-their origins and vector interactions. Curr Opin Virol 33:198–207

    Article  CAS  Google Scholar 

  5. Hoffmann B, Beer M, Schutze H, Mettenleiter TC (2005) Fish rhabdoviruses: molecular epidemiology and evolution. Curr Top Microbiol Immunol 292:81–117

    CAS  Google Scholar 

  6. Walker PJ, Klement E (2015) Epidemiology and control of bovine ephemeral fever. Vet Res 46:124

    Article  Google Scholar 

  7. Liu C, Cahill JD (2013) Epidemiology of rabies and current US vaccine guidelines. R I Med J (2013) 103(6):51–3

  8. Dietzgen RG, Bejerman NE, Goodin MM, Higgins CM, Huot OB, Kondo H et al (2020) Diversity and epidemiology of plant rhabdoviruses. Virus Res 281:197942

    Article  CAS  Google Scholar 

  9. Dietzgen RG, Kuhn JH, Clawson AN, Freitas-Astua J, Goodin MM, Kitajima EW et al (2014) Dichorhavirus: a proposed new genus for Brevipalpus mite-transmitted, nuclear, bacilliform, bipartite, negative-strand RNA plant viruses. Arch Virol 159(3):607–619

    Article  CAS  Google Scholar 

  10. Walker PJ, Firth C, Widen SG, Blasdell KR, Guzman H, Wood TG et al (2015) Evolution of genome size and complexity in the rhabdoviridae. PLoS Pathog 11(2):e1004664

    Article  Google Scholar 

  11. Li CX, Shi M, Tian JH, Lin XD, Kang YJ, Chen LJ et al (2015) Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 4:e05378

  12. Batson J, Dudas G, Haas-Stapleton E, Kistler AL, Li LM, Logan P et al (2021) Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. Elife 10:e68353

  13. Charles J, Firth AE, Lorono-Pino MA, Garcia-Rejon JE, Farfan-Ale JA, Lipkin WI et al (2016) Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico. J Gen Virol 97(4):977–987

    Article  CAS  Google Scholar 

  14. Ergunay K, Brinkmann A, Litzba N, Gunay F, Kar S, Oter K et al (2017) A novel rhabdovirus, related to Merida virus, in field-collected mosquitoes from Anatolia and Thrace. Arch Virol 162(7):1903–1911

    Article  CAS  Google Scholar 

  15. Kubacki J, Hardmeier I, Qi W, Flacio E, Tonolla M, Fraefel C (2021) Complete genome sequence of a rhabdovirus strain from culex mosquitos collected in Southern Switzerland. Microbiol Resour Announc 10(1):e01234–20

  16. Lara Pinto AZ, Santos de Carvalho M, de Melo FL, Ribeiro ALM, Morais Ribeiro B, Dezengrini Slhessarenko R (2017) Novel viruses in salivary glands of mosquitoes from sylvatic Cerrado, Midwestern Brazil. PLoS One 12(11):e0187429

  17. Reeves WK, Miller MM, Gruner WE (2018) Two Rhabdoviridae: Dillard’s Draw virus, aputative new virus, and Merida virus from Culex tarsalis (Diptera: Culicidae) in New Mexico, USA. Acta Virol 62(3):326–329

    Article  CAS  Google Scholar 

  18. Sadeghi M, Altan E, Deng X, Barker CM, Fang Y, Coffey LL et al (2018) Virome of >12 thousand Culex mosquitoes from throughout California. Virology 523:74–88

    Article  CAS  Google Scholar 

  19. Shahhosseini N, Luhken R, Jost H, Jansen S, Borstler J, Rieger T et al (2017) Detection and characterization of a novel rhabdovirus in Aedes cantans mosquitoes and evidence for a mosquito-associated new genus in the family Rhabdoviridae. Infect Genet Evol 55:260–268

    Article  Google Scholar 

  20. Wang L, Rosales Rosas AL, De Coninck L, Shi C, Bouckaert J, Matthijnssens J et al (2021) Establishment of Culex modestus in Belgium and a glance into the virome of Belgian mosquito species. mSphere 6(2)e01229–20

  21. Contreras MA, Eastwood G, Guzman H, Popov V, Savit C, Uribe S et al (2017) Almendravirus: a proposed new genus of rhabdoviruses isolated from mosquitoes in tropical regions of the Americas. Am J Trop Med Hyg 96(1):100–109

    Article  Google Scholar 

  22. Vasilakis N, Castro-Llanos F, Widen SG, Aguilar PV, Guzman H, Guevara C et al (2014) Arboretum and Puerto Almendras viruses: two novel rhabdoviruses isolated from mosquitoes in Peru. J Gen Virol 95(Pt 4):787–792

    Article  CAS  Google Scholar 

  23. Sun Q, Zhao Q, An X, Guo X, Zuo S, Zhang X et al (2017) Complete genome sequence of Menghai rhabdovirus, a novel mosquito-borne rhabdovirus from China. Arch Virol 162(4):1103–1106

    Article  CAS  Google Scholar 

  24. Sanborn MA, Wuertz KM, Kim HC, Yang Y, Li T, Pollett SD et al (2021) Metagenomic analysis reveals Culex mosquito virome diversity and Japanese encephalitis genotype V in the Republic of Korea. Mol Ecol 30(21):5470–5487

    Article  CAS  Google Scholar 

  25. Pyke AT, Shivas MA, Darbro JM, Onn MB, Johnson PH, Crunkhorn A et al (2021) Uncovering the genetic diversity within the Aedes notoscriptus virome and isolation of new viruses from this highly urbanised and invasive mosquito. Virus Evol 7(2):veab082

  26. Charles J, Tangudu CS, Hurt SL, Tumescheit C, Firth AE, Garcia-Rejon JE et al (2018) Detection of novel and recognized RNA viruses in mosquitoes from the Yucatan Peninsula of Mexico using metagenomics and characterization of their in vitro host ranges. J Gen Virol 99(12):1729–1738

    Article  CAS  Google Scholar 

  27. Nebbak A, Monteil-Bouchard S, Berenger JM, Almeras L, Parola P, Desnues C (2021) Virome Diversity among mosquito populations in a sub-urban region of Marseille, France. Viruses 13(5):768

  28. Hameed M, Wahaab A, Shan T, Wang X, Khan S, Di D et al (2020) A Metagenomic analysis of mosquito virome collected from different animal farms at Yunnan-Myanmar border of China. Front Microbiol 11:591478

    Article  Google Scholar 

  29. Williams SH, Levy A, Yates RA, Somaweera N, Neville PJ, Nicholson J et al (2020) The diversity and distribution of viruses associated with Culex annulirostris mosquitoes from the Kimberley Region of Western Australia. Viruses 12(7):717

  30. Oliver JD, Burkhardt NY, Felsheim RF, Kurtti TJ, Munderloh UG (2014) Motility characteristics are altered for Rickettsia bellii transformed to overexpress a heterologous rickA gene. Appl Environ Microbiol 80(3):1170–1176

    Article  Google Scholar 

  31. R. DRW (2005) Identification and geographical distribution of the mosquitoes of North America, North of Mexico. Gainesville, FL, USA: University Press of Florida

  32. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  Google Scholar 

  33. Peng C, Qian Z, Xinyu Z, Qianqian L, Maoqing G, Zhong Z et al (2021) A draft genome assembly of Culex pipiens pallens (Diptera: Culicidae) using PacBio sequencing. Genome Biol Evol 13(3):evab005

  34. Kopylova E, Noe L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28(24):3211–3217

    Article  CAS  Google Scholar 

  35. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  Google Scholar 

  36. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240

    Article  CAS  Google Scholar 

  37. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113

    Article  Google Scholar 

  38. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol 4(1):vey016

  39. Sucaet Y, Van Hemert J, Tucker B, Bartholomay L (2008) A web-based relational database for monitoring and analyzing mosquito population dynamics. J Med Entomol 45(4):775–784

    Article  Google Scholar 

  40. Shi M, Neville P, Nicholson J, Eden JS, Imrie A, Holmes EC (2017) High-resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in Western Australia. J Virol 91(17):e00680–17

  41. Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX et al (2016) Redefining the invertebrate RNA virosphere. Nature 540(7634):539–543

    Article  CAS  Google Scholar 

  42. Marklewitz M, Gloza-Rausch F, Kurth A, Kummerer BM, Drosten C, Junglen S (2012) First isolation of an Entomobirnavirus from free-living insects. J Gen Virol 93(Pt 11):2431–2435

    Article  CAS  Google Scholar 

  43. Goertz GP, Miesen P, Overheul GJ, van Rij RP, van Oers MM, Pijlman GP (2019) Mosquito small RNA responses to West Nile and insect-specific virus infections in Aedes and Culex mosquito cells. Viruses 11(3):271

  44. Delmas B, Attoui H, Ghosh S, Malik YS, Mundt E, Vakharia VN et al (2019) ICTV virus taxonomy profile: Birnaviridae. J Gen Virol 100(1):5–6

    Article  CAS  Google Scholar 

  45. Vasilakis N, Guzman H, Firth C, Forrester NL, Widen SG, Wood TG et al (2014) Mesoniviruses are mosquito-specific viruses with extensive geographic distribution and host range. Virol J 11:97

    Article  Google Scholar 

  46. Cigarroa-Toledo N, Baak-Baak CM, Cetina-Trejo RC, Cordova-Fletes C, Martinez-Nunez MA, Talavera-Aguilar LG et al (2018) Complete genome sequence of houston virus, a newly discovered mosquito-specific virus isolated from Culex quinquefasciatus in Mexico. Microbiol Resour Announc 7(10):e00808–18

  47. Tangudu CS, Charles J, Hurt SL, Dunphy BM, Smith RC, Bartholomay LC et al (2019) Skunk River virus, a novel orbivirus isolated from Aedes trivittatus in the United States. J Gen Virol 100(2):295–300

    Article  CAS  Google Scholar 

  48. Pyle JD, Keeling PJ, Nibert ML (2017) Amalga-like virus infecting Antonosporalocustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Res 233:95–104

    Article  CAS  Google Scholar 

  49. Cook S, Chung BY, Bass D, Moureau G, Tang S, McAlister E et al (2013) Novel virus discovery and genome reconstruction from field RNA samples reveals highly divergent viruses in dipteran hosts. PLoS ONE 8(11):e80720

    Article  Google Scholar 

  50. Pettersson JH, Shi M, Eden JS, Holmes EC, Hesson JC (2019) Meta-transcriptomic comparison of the RNA viromes of the Mosquito vectors Culex pipiens and Culex torrentium in Northern Europe. Viruses 11(11)

  51. Bennett AJ, Bushmaker T, Cameron K, Ondzie A, Niama FR, Parra HJ et al (2019) Diverse RNA viruses of arthropod origin in the blood of fruit bats suggest a link between bat and arthropod viromes. Virology 528:64–72

    Article  CAS  Google Scholar 

  52. Langat SK, Eyase F, Bulimo W, Lutomiah J, Oyola SO, Imbuga M et al (2021) Profiling of RNA viruses in biting midges (Ceratopogonidae) and related Diptera from Kenya using metagenomics and metabarcoding analysis. mSphere 6(5):e0055121

  53. Ortiz-Baez AS, Shi M, Hoffmann AA, Holmes EC (2021) RNA virome diversity and Wolbachia infection in individual Drosophila simulans flies. J Gen Virol 102(10):001639

  54. Report I (2020) Tombusviridae—virus taxonomy: 2020 release, https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/277/tombusviridae. Accessed 11 Nov 2021

  55. Report I (2020) Totiviridae—virus taxonomy: 2020 release. https://talk.ictvonline.org/ictv-reports/ictv_9th_report/dsrna-viruses-2011/w/dsrna_viruses/191/totiviridae. Accessed 11 Nov 2021

  56. Annon (2021) Centers for Disease Control and Prevention Arbovirus Catalog—Gray Lodge virus. https://wwwn.cdc.gov/arbocat/VirusDetails.aspx?ID=166&SID=6. Accessed 2 Dec 2021

  57. Attoui H, Mohd Jaafar F, Belhouchet M, Biagini P, Cantaloube JF, de Micco P et al (2005) Expansion of family Reoviridae to include nine-segmented dsRNA viruses: isolation and characterization of a new virus designated Aedes pseudoscutellaris reovirus assigned to a proposed genus (Dinovernavirus). Virology 343(2):212–223

    Article  CAS  Google Scholar 

  58. Mokili JL, Rohwer F, Dutilh BE (2012) Metagenomics and future perspectives in virus discovery. Curr Opin Virol 2(1):63–77

    Article  CAS  Google Scholar 

  59. Zhang YZ, Chen YM, Wang W, Qin XC, Holmes EC (2019) Expanding the RNA virosphere by unbiased metagenomics. Annu Rev Virol 6(1):119–139

    Article  CAS  Google Scholar 

  60. Brault AC, Blitvich BJ (2018) Continued need for comprehensive genetic and phenotypic characterization of viruses: benefits of complementing sequence analyses with functional determinations. Am J Trop Med Hyg 98(5):1213

    Article  Google Scholar 

  61. Hill JH, Whitham SA (2014) Control of virus diseases in soybeans. Adv Virus Res 90:355–390

    Article  Google Scholar 

  62. Smith CM, Gedling CR, Wiebe KF, Cassone BJ (2017) A sweet story: bean pod mottle virus transmission dynamics by Mexican bean beetles **(Epilachna varivestis). Genome Biol Evol 9(3):714–725

    Article  CAS  Google Scholar 

  63. Krell RK, Pedigo LP, Hill JH, Rice ME (2003) Potential primary inoculum sources of bean pod mottle virus in Iowa. Plant Dis 87(12):1416–1422

    Article  Google Scholar 

  64. Blitvich BJ, Lin M, Dorman KS, Soto V, Hovav E, Tucker BJ et al (2009) Genomic sequence and phylogenetic analysis of Culex flavivirus, an insect-specific flavivirus, isolated from Culex pipiens (Diptera: Culicidae) in Iowa. J Med Entomol 46(4):934–941

    Article  CAS  Google Scholar 

  65. Gilliland TM, Rowley WA, Swack NS, Vandyk JK, Bartoces MG (1995) Arbovirus surveillance in Iowa, USA, during the flood of 1993. J Am Mosq Control Assoc 11(2 Pt 1):157–161

    CAS  Google Scholar 

  66. He W, Chen Y, Zhang X, Peng M, Xu D, He H et al (2021) Virome in adult Aedes albopictus captured during different seasons in Guangzhou City, China. Parasit Vectors 14(1):415

    Article  CAS  Google Scholar 

  67. Coffey LL, Page BL, Greninger AL, Herring BL, Russell RC, Doggett SL et al (2014) Enhanced arbovirus surveillance with deep sequencing: identification of novel rhabdoviruses and bunyaviruses in Australian mosquitoes. Virology 448:146–158

    Article  CAS  Google Scholar 

  68. Shi C, Liu Y, Hu X, Xiong J, Zhang B, Yuan Z (2015) A metagenomic survey of viral abundance and diversity in mosquitoes from Hubei province. PLoS ONE 10(6):e0129845

    Article  Google Scholar 

  69. Fauver JR, Grubaugh ND, Krajacich BJ, Weger-Lucarelli J, Lakin SM, Fakoli LS 3rd et al (2016) West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology 498:288–299

    Article  CAS  Google Scholar 

  70. Cholleti H, Hayer J, Abilio AP, Mulandane FC, Verner-Carlsson J, Falk KI et al (2016) Discovery of novel viruses in mosquitoes from the zambezi valley of Mozambique. PLoS ONE 11(9):e0162751

    Article  Google Scholar 

  71. Atoni E, Wang Y, Karungu S, Waruhiu C, Zohaib A, Obanda V et al (2018) Metagenomic virome analysis of Culex mosquitoes from Kenya and China. Viruses 10(1):30

  72. Xiao P, Li C, Zhang Y, Han J, Guo X, Xie L et al (2018) Metagenomic sequencing from mosquitoes in China reveals a variety of insect and human viruses. Front Cell Infect Microbiol 8:364

    Article  CAS  Google Scholar 

  73. Ohlund P, Hayer J, Lunden H, Hesson JC, Blomstrom AL (2019) Viromics reveal a number of novel RNA viruses in Swedish mosquitoes. Viruses 11(11):1027

  74. Ramos-Nino ME, Fitzpatrick DM, Eckstrom KM, Tighe S, Hattaway LM, Hsueh AN et al (2020) Metagenomic analysis of Aedes aegypti and Culex quinquefasciatus mosquitoes from Grenada, West Indies. PLoS ONE 15(4):e0231047

    Article  CAS  Google Scholar 

  75. Ramirez AL, Colmant AMG, Warrilow D, Huang B, Pyke AT, McMahon JL et al (2020) Metagenomic analysis of the virome of mosquito excreta. mSphere 5(5)

  76. He X, Yin Q, Zhou L, Meng L, Hu W, Li F et al (2021) Metagenomic sequencing reveals viral abundance and diversity in mosquitoes from the Shaanxi-Gansu-Ningxia region, China. PLoS Negl Trop Dis 15(4):e0009381

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the local public health partners who assisted in the mosquito surveillance efforts. The authors also thank Ulrike Munderloh for providing ISE6 cells and L15C medium, and Lauren Hensley for technical assistance.

Funding

This study was primarily supported by intramural funds provided by the College of Veterinary Medicine at Iowa State University. The study was also supported by the Iowa Department of Public Health through Epidemiology and Laboratory Capacity for Infectious Diseases (ELC) Program Components Contract #5887EL11 and Iowa State University Agricultural Experiment Station, USDA National Institute of Food and Agriculture, Hatch Project 101071. This publication was also supported by Cooperative Agreement #U01 CK000505, funded by the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers of Disease Control and Prevention or the Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Contributions

CST performed most of the laboratory work and all of the bioinformatics and phylogenetic analyses; AMH and SVLT performed selected experiments, including some of the PEG precipitations, RNA extractions, RT-PCRs, and cell culture; RCS coordinated the mosquito collections; and BJB conceived the idea and prepared the first draft of the manuscript. All other authors reviewed the first draft and provided constructive feedback. RCS and BJB acquired the funding that supported the study.

Corresponding author

Correspondence to Bradley J. Blitvich.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial conflicts of interests to disclose.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Simona Abba.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

GenBank accession nos. OM250022, OM743936-OM743948, OM817530-OM817559 and OM687484-OM687486.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 170 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tangudu, C.S., Hargett, A.M., Laredo-Tiscareño, S.V. et al. Isolation of a novel rhabdovirus and detection of multiple novel viral sequences in Culex species mosquitoes in the United States. Arch Virol 167, 2577–2590 (2022). https://doi.org/10.1007/s00705-022-05586-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05586-5

Navigation