Skip to main content
Log in

Complete genome sequence of a putative novel cytorhabdovirus isolated from Rudbeckia sp.

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Through high-throughput RNA sequencing, we discovered a putative new cytorhabdovirus in the seeds of Rudbeckia sp., which we have tentatively named “rudbeckia virus 1” (RudV1). Its complete 12,502-nt genomic sequence contains five open reading frames (ORFs): ORF1 (putative nucleocapsid protein, N), ORF2 (putative phosphoprotein, P), ORF3 (putative cell-to-cell movement protein, P3), ORF4 (putative matrix protein, M), and ORF5 (putative RNA-dependent RNA polymerase, L). BLASTp searches showed that ORF1, ORF3, ORF4, and ORF5 of RudV1 are most closely related to the corresponding proteins of Tagetes erecta virus 1 (a putative member of the genus Cytorhabdovirus) with 33.87% (88% query coverage), 55.98% (89% query coverage), 35.33% (94% query coverage), and 57.75% (98% query coverage) sequence identity at the amino acid level, respectively. Phylogenetic analysis and pairwise comparisons indicated that RudV1 is a novel member of the genus Cytorhabdovirus within the family Rhabdoviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kuzmin IV, Novella IS, Dietzgen RG, Padhi A, Rupprecht CE (2009) The rhabdoviruses: biodiversity, phylogenetics, and evolution. Infect Genet Evol 9(4):541–553. https://doi.org/10.1016/j.meegid.2009.02.005

    Article  CAS  PubMed  Google Scholar 

  2. Dietzgen RG, Bejerman NE, Goodin MM, Higgins CM, Huot OB, Kondo H, Martin KM, Whitfield AE (2020) Diversity and epidemiology of plant rhabdoviruses. Virus Res 281:197942. https://doi.org/10.1016/j.virusres.2020.197942

    Article  CAS  PubMed  Google Scholar 

  3. Jackson AO, Dietzgen RG, Goodin MM, Bragg JN, Deng M (2005) Biology of plant rhabdoviruses. Annu Rev Phytopathol 43:623–660. https://doi.org/10.1146/annurev.phyto.43.011205.141136

    Article  CAS  PubMed  Google Scholar 

  4. Bejerman N, Dietzgen RG, Debat H (2021) Illuminating the plant rhabdovirus landscape through metatranscriptomics data. Viruses 13(7):1304. https://doi.org/10.3390/v13071304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Christie SR, Christie RG, Edwardson JR (1974) Transmission of a bacilliform virus of sowthistle and Bidens pilosa. Phytopathology 64(6):840–845

    Article  Google Scholar 

  6. Dietzgen RG, Callaghan B, Campbell PR (2007) Biology and genomics of lettuce necrotic yellows virus. Plant Viruses 1(1):85–92

    Google Scholar 

  7. Heim F, Lot H, Delecolle B, Bassler A, Krczal G, Wetzel T (2008) Complete nucleotide sequence of a putative new cytorhabdovirus infecting lettuce. Arch Virol 153(1):81–92. https://doi.org/10.1007/s00705-007-1071-5

    Article  CAS  PubMed  Google Scholar 

  8. Liu Q, Jin J, Yang L, Zhang S, Cao M (2021) Molecular characterization of a novel cytorhabdovirus associated with chrysanthemum yellow dwarf disease. Arch Virol 166(4):1253–1257. https://doi.org/10.1007/s00705-021-04987-2

    Article  CAS  PubMed  Google Scholar 

  9. Peters D, Kitajima EW (1970) Purification and electron microscopy of sowthistle yellow vein virus. Virology 41(1):135–150. https://doi.org/10.1016/0042-6822(70)90061-9

    Article  CAS  PubMed  Google Scholar 

  10. Redinbaugh MG, Hogenhout SA (2005) Plant rhabdoviruses. Curr Top Microbiol Immunol 292:143–163. https://doi.org/10.1007/3-540-27485-5_7

    Article  CAS  PubMed  Google Scholar 

  11. Salem N, Odeh S, Muslem MA, Tahzima R (2020) Occurrence and partial genetic characterisation of Lettuce big-vein associated virus and Mirafiori lettuce big-vein virus infecting lettuce in Jordan. Ann Appl Biol 177(1):90–100. https://doi.org/10.1111/aab.12595

    Article  CAS  Google Scholar 

  12. Whitfield AE, Huot OB, Martin KM, Kondo H, Dietzgen RG (2018) Plant rhabdoviruses—their origins and vector interactions. Curr Opin Virol 33:198–207. https://doi.org/10.1016/j.coviro.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  13. Dietzgen RG, Kondo H, Goodin MM, Kurath G, Vasilakis N (2017) The family Rhabdoviridae: mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res 227:158–170. https://doi.org/10.1016/j.virusres.2016.10.010

    Article  CAS  PubMed  Google Scholar 

  14. Yan T, Zhu JR, Di D, Gao Q, Zhang Y, Zhang A, Yan C, Miao H, Wang XB (2015) Characterization of the complete genome of Barley yellow striate mosaic virus reveals a nested gene encoding a small hydrophobic protein. Virology 478:112–122. https://doi.org/10.1016/j.virol.2014.12.042

    Article  CAS  PubMed  Google Scholar 

  15. Jun M, Shin S, Lee SJ, Lim S (2021) First report of Raphanus sativus cryptic virus 2 on cabbage seeds (Brassica rapa subsp. pekinensis) imported from Italy. Virus Dis 32(4):834–836. https://doi.org/10.1007/s13337-021-00744-w

    Article  CAS  Google Scholar 

  16. Higgins CM, Bejerman N, Li M, James AP, Dietzgen RG, Pearson MN, Revill PA, Harding RM (2016) Complete genome sequence of Colocasia bobone disease-associated virus, a putative Cytorhabdovirus infecting taro. Arch Virol 161(3):745–748. https://doi.org/10.1007/s00705-015-2713-7

    Article  CAS  PubMed  Google Scholar 

  17. Tanno F, Nakatsu A, Toriyama S, Kojima M (2000) Complete nucleotide sequence of Northern cereal mosaic virus and its genome organization. Arch Virol 145(7):1373–1384. https://doi.org/10.1007/s007050070096

    Article  CAS  PubMed  Google Scholar 

  18. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang S, Huang A, Zhou X, Li Z, Dietzgen RG, Zhou C, Cao M (2021) Natural defect of a plant rhabdovirus glycoprotein gene: a case study of virus-plant coevolution. Phytopathology 111(1):227–236. https://doi.org/10.1094/PHYTO-05-20-0191-FI

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research fund (project no. B-1543086-2021-22-01) from the Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea. We would like to thank Editage (www.editage.co.kr) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

Seungmo Lim and Seong-Jin Lee contributed to the study conception and design. Experiments, data collection, and analysis were performed by Da-Som Lee, Juhyun Kim, Minji Jun, Sanghyun Shin, and Seungmo Lim. Da-Som Lee and Seungmo Lim wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Seungmo Lim.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not describe any studies involving human participants or animals performed by any of the authors.

Additional information

Handling Editor: Ralf Georg Dietzgen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DS., Kim, J., Jun, M. et al. Complete genome sequence of a putative novel cytorhabdovirus isolated from Rudbeckia sp.. Arch Virol 167, 2381–2385 (2022). https://doi.org/10.1007/s00705-022-05556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05556-x

Navigation