Skip to main content
Log in

Rapid emergence of a PB2 D701N substitution during adaptation of an H9N2 avian influenza virus in mice

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

H9N2 avian influenza viruses (AIVs) have been isolated frequently from multiple avian species and, occasionally, from humans. To explore the potential molecular basis of cross-species transmission of H9N2 AIVs, an H9N2 AIV (A/chicken/Zhejiang/221/2016) was serially passaged in mouse lung. The results showed that the mouse-adapted H9N2 virus exhibited higher virulence and replicated more efficiently in mouse lung and liver. Whole-genome sequencing showed an amino acid substitution, D701N, in the PB2 protein, which is likely associated with the increased replicative ability of H9N2 virus in mice. The rapid emergence of adaptive substitutions indicates the necessity of continuous monitoring of H9N2 virus in poultry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Homme PJ, Easterday BC (1970) Avian influenza virus infections. 3. Antibody response by turkeys to influenza-a/Turkey/Wisconsin/1966 Virus. Avian Dis 14(2):277. https://doi.org/10.2307/1588472

    Article  CAS  PubMed  Google Scholar 

  2. Gu M, Xu LJ, Wang XQ, Liu XF (2017) Current situation of H9N2 subtype avian influenza in China. Vet Res 48:49. https://doi.org/10.1186/s13567-017-0453-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bi YH, Li J, Li SQ, Fu GH, Jin T, Zhang C, Yang YC, Ma ZH, Tian WX, Li JD, Xiao SQ, Li LQ, Yin RF, Zhang Y, Wang LX, Qin YT, Yao ZZ, Meng FY, Hu DF, Li DL, Wong G, Liu F, Lv N, Wang L, Fu LF, Yang Y, Peng Y, Ma JM, Sharshov K, Shestopalov A, Gulyaeva M, Gao GF, Chen JJ, Shi Y, Liu WJ, Chu D, Huang Y, Liu YX, Liu L, Liu WJ, Chen QJ, Shi WF (2020) Dominant subtype switch in avian influenza viruses during 2016–2019 in China. Nat Commun 11(1):5909. https://doi.org/10.1038/S41467-020-19671-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pu J, Wang SG, Yin YB, Zhang GZ, Carter RA, Wang JL, Xu GL, Sun HL, Wang M, Wen C, Wei YD, Wang DD, Zhu BL, Lemmon G, Jiao YN, Duan SS, Wang Q, Du Q, Sun M, Bao JN, Sun YP, Zhao JX, Zhang H, Wu G, Liu JH, Webster RG (2015) Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc Natl Acad Sci USA 112(2):548–553. https://doi.org/10.1073/pnas.1422456112

    Article  CAS  PubMed  Google Scholar 

  5. Hu ZB, Peng FH, Xiong ZH, Zhang WP, Li TT, Shi YJ, Xie J, Jin X, Huang JJ, Xiao HD, Bi DR, Song NH, Li ZL (2020) Genetic and molecular characterization of H9N2 avian influenza viruses isolated from live poultry markets in Hubei Province, Central China, 2013–2017. Virol Sin. https://doi.org/10.1007/s12250-020-00260-z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huang R, Wang AR, Liu ZH, Liang W, Li XX, Tang YJ, Miao ZM, Chai TJ (2013) Seroprevalence of avian influenza H9N2 among poultry workers in Shandong Province, China. Eur J Clin Microbiol 32(10):1347–1351. https://doi.org/10.1007/s10096-013-1888-7

    Article  CAS  Google Scholar 

  7. Gomaa MR, El Rifay AS, Abu Zeid D, Elabd MA, Elabd E, Kandeil A, Shama NMA, Kamel MN, Marouf MA, Barakat A, Refaey S, Naguib A, McKenzie PP, Webby RJ, Ali MA, Kayali G (2020) Incidence and seroprevalence of avian influenza in a cohort of backyard poultry growers, Egypt, August 2015-March 2019. Emerg Infect Dis 26(9):2129–2136. https://doi.org/10.3201/eid2609.200266

    Article  PubMed  PubMed Central  Google Scholar 

  8. WHO (2022) Avian influenza weekly update number 837. http://apps.who.int/iris/handle/10665/351652. Accessed Apr 24 2022

  9. Chen H, Yuan H, Gao R, Zhang J, Wang D, Xiong Y, Fan G, Yang F, Li X, Zhou J, Zou S, Yang L, Chen T, Dong L, Bo H, Zhao X, Zhang Y, Lan Y, Bai T, Dong J, Li Q, Wang S, Zhang Y, Li H, Gong T, Shi Y, Ni X, Li J, Zhou J, Fan J, Wu J, Zhou X, Hu M, Wan J, Yang W, Li D, Wu G, Feng Z, Gao GF, Wang Y, Jin Q, Liu M, Shu Y (2014) Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study. Lancet 383(9918):714–721. https://doi.org/10.1016/S0140-6736(14)60111-2

    Article  PubMed  Google Scholar 

  10. Lam TT, Wang J, Shen Y, Zhou B, Duan L, Cheung CL, Ma C, Lycett SJ, Leung CY, Chen X, Li L, Hong W, Chai Y, Zhou L, Liang H, Ou Z, Liu Y, Farooqui A, Kelvin DJ, Poon LL, Smith DK, Pybus OG, Leung GM, Shu Y, Webster RG, Webby RJ, Peiris JS, Rambaut A, Zhu H, Guan Y (2013) The genesis and source of the H7N9 influenza viruses causing human infections in China. Nature 502(7470):241–244. https://doi.org/10.1038/nature12515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kong WL, Huang LZ, Cao N, Qi HT, Zhao MM, Guan SS, Wang WH, Zao FR, Qi WB, Jiao PR, Zhang GH (2011) Isolation and phylogenetic analysis of H9N2 swine influenza virus from sick pigs in Southern China in 2010. J Anim Vet Adv 10(18):2331–2342

    Google Scholar 

  12. Dong X, Xiong JS, Huang CL, Xiang J, Wu WJ, Chen NS, Wen DN, Tu C, Qiao XL, Kang L, Yao ZZ, Zhang DY, Chen QJ (2020) Human H9N2 avian influenza infection: epidemiological and clinical characterization of 16 cases in China. Virol Sin. https://doi.org/10.1007/s12250-020-00248-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gao RB, Cao B, Hu YW, Feng ZJ, Wang DY, Hu WF, Chen J, Jie ZJ, Qiu HB, Xu K, Xu XW, Lu HZ, Zhu WF, Gao ZC, Xiang NJ, Shen YZ, He ZB, Gu Y, Zhang ZY, Yang Y, Zhao X, Zhou L, Li XD, Zou SM, Zhang Y, Li XY, Yang L, Guo JF, Dong J, Li Q, Dong LB, Zhu Y, Bai T, Wang SW, Hao P, Yang WZ, Zhang YP, Han J, Yu HJ, Li DX, Gao GF, Wu GZ, Wang Y, Yuan ZH, Shu YL (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. New Engl J Med 368(20):1888–1897. https://doi.org/10.1056/Nejmoa1304459

    Article  CAS  PubMed  Google Scholar 

  14. Wu HB, Lu RF, Peng XM, Peng XR, Chen B, Cheng LF, Wu NP (2017) Molecular characterization of a novel reassortant H7N6 subtype avian influenza virus from poultry in Eastern China, in 2016. Adv Virol 162(5):1341–1347. https://doi.org/10.1007/s00705-017-3219-2

    Article  CAS  Google Scholar 

  15. Sang XY, Wang AR, Chai TJ, He XJ, Ding J, Gao XL, Li YG, Zhang K, Ren ZG, Li L, Yu ZJ, Wang TC, Feng N, Zheng XX, Wang HL, Zhao YK, Yang ST, Gao YW, Xia XZ (2015) Rapid emergence of a PB2-E627K substitution confers a virulent phenotype to an H9N2 avian influenza virus during adaption in mice. Adv Virol 160(5):1267–1277. https://doi.org/10.1007/s00705-015-2383-5

    Article  CAS  Google Scholar 

  16. Wu HB, Peng XM, Peng XR, Cheng LF, Jin CZ, Lu XY, Xie TS, Yao HP, Wu NP (2016) Multiple amino acid substitutions involved in the adaptation of avian-origin influenza A (H10N7) virus in mice. Adv Virol 161(4):977–980. https://doi.org/10.1007/s00705-015-2722-6

    Article  CAS  Google Scholar 

  17. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Adv Virol 146(12):2275–2289. https://doi.org/10.1007/s007050170002

    Article  CAS  Google Scholar 

  18. Wu HB, Peng XM, Peng XR, Cheng LF, Lu XY, Jin CZ, Xie TS, Yao HP, Wu NP (2015) Genetic and molecular characterization of H9N2 and H5 avian influenza viruses from live poultry markets in Zhejiang Province, eastern China. Sci Rep 5:17508. https://doi.org/10.1038/Srep17508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu WF, Li L, Yan ZG, Gan TH, Li LF, Chen RR, Chen RD, Zheng ZY, Hong WS, Wang J, Smith DK, Guan Y, Zhu HC, Shu YL (2015) Dual E627K and D701N mutations in the PB2 protein of A(H7N9) influenza virus increased its virulence in mammalian models. Sci Rep 5:14170. https://doi.org/10.1038/Srep14170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu ZJ, Cheng KH, Wang TC, Ren ZG, Wu JQ, He HB, Gao YW (2019) Two mutations in viral protein enhance the adaptation of waterfowl-origin H3N2 virus in murine model. Virus Res 269:197639. https://doi.org/10.1016/j.virusres.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  21. Li QH, Wang X, Sun ZT, Hu J, Gao Z, Hao XL, Li J, Liu HM, Wang XQ, Gu M, Xu XL, Liu XW, Liu XF (2015) Adaptive mutations in PB2 gene contribute to the high virulence of a natural reassortant H5N2 avian influenza virus in mice. Virus Res 210:255–263. https://doi.org/10.1016/j.virusres.2015.08.017

    Article  CAS  PubMed  Google Scholar 

  22. Yang F, Xiao YX, Lu RF, Chen B, Liu FM, Wang LY, Yao HP, Wu NP, Wu HB (2020) Generation of neutralizing and non-neutralizing monoclonal antibodies against H7N9 influenza virus. Emerg Microbes Infect 9(1):664–675. https://doi.org/10.1080/22221751.2020.1742076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rabadan R, Levine AJ, Krasnitz M (2008) Non-random reassortment in human influenza A viruses. Influenza Other Resp 2(1):9–22. https://doi.org/10.1111/j.1750-2659.2007.00030.x

    Article  CAS  Google Scholar 

  24. Xu HY, Qian JQ, Song YF, Ming DM (2020) The adaptability of H9N2 avian influenza A virus to humans: a comparative docking simulation study. Biochem Bioph Res Co 529(4):963–969. https://doi.org/10.1016/j.bbrc.2020.06.065

    Article  CAS  Google Scholar 

  25. Li HN, Li Q, Li B, Guo Y, Xing JC, Xu Q, Liu LL, Zhang JH, Qi WB, Jia WX, Liao M (2020) Continuous reassortment of Clade 2.3.4.4 H5N6 highly pathogenetic avian influenza viruses demonstrating high risk to public health. Pathogens 9(8):670. https://doi.org/10.3390/Pathogens9080670

    Article  PubMed Central  Google Scholar 

  26. Chen HY, Yuan H, Gao RB, Zhang JX, Wang DY, Xiong Y, Fan GY, Yang F, Li XD, Zhou JF, Zou SM, Yang L, Chen T, Dong LB, Bo H, Zhao X, Zhang Y, Lan Y, Bai T, Dong J, Li Q, Wang SW, Zhang YP, Li H, Gong T, Shi Y, Ni XS, Li JX, Zhou J, Fan JY, Wu JW, Zhou XF, Hu MH, Wan JG, Yang WZ, Li DX, Wu GZ, Feng ZJ, Gao GF, Wang Y, Jin Q, Liu MB, Shu YL (2014) Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection : a descriptive study. Lancet 383(9918):714–721. https://doi.org/10.1016/S0140-6736(14)60111-2

    Article  PubMed  Google Scholar 

  27. Zhang H, Li XY, Guo J, Li L, Chang C, Li YY, Bian C, Xu K, Chen HL, Sun B (2014) The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. J Gen Virol 95:779–786. https://doi.org/10.1099/vir.0.061721-0

    Article  CAS  PubMed  Google Scholar 

  28. Czudai-Matwich V, Otte A, Matrosovich M, Gabriel G, Klenka HD (2014) PB2 Mutations D701N and S714R Promote Adaptation of an Influenza H5N1 Virus to a Mammalian Host. J Virol 88(16):8735–8742. https://doi.org/10.1128/Jvi.00422-14

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang X, Xu G, Wang C, Jiang M, Gao W, Wang M, Sun H, Sun Y, Chang KC, Liu J, Pu J (2017) Enhanced pathogenicity and neurotropism of mouse-adapted H10N7 influenza virus are mediated by novel PB2 and NA mutations. J Gen Virol 98(6):1185–1195. https://doi.org/10.1099/jgv.0.000770

    Article  CAS  PubMed  Google Scholar 

  30. Yu Z, Ren Z, Zhao Y, Cheng K, Sun W, Zhang X, Wu J, He H, Xia X, Gao Y (2019) PB2 and hemagglutinin mutations confer a virulent phenotype on an H1N2 avian influenza virus in mice. Adv Virol 164(8):2023–2029. https://doi.org/10.1007/s00705-019-04283-0

    Article  CAS  Google Scholar 

  31. Wu H, Liu F, Yang F, Xiao Y, Yao H, Wu N (2020) Amino acid substitutions involved in the adaptation of a novel H7N7 avian influenza virus in mice. Res Vet Sci 130:203–206. https://doi.org/10.1016/j.rvsc.2020.03.017

    Article  CAS  PubMed  Google Scholar 

  32. Liu K, Wang X, Jiang D, Xu N, Gao R, Han W, Gu M, Hu J, Liu X, Hu S, Liu X (2020) Pathogenicity and transmissibility of an H9N2 avian influenza virus that naturally harbors the mammalian-adaptive molecular factors in the hemagglutinin and PB2 proteins. J Infect. https://doi.org/10.1016/j.jinf.2020.09.009

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sediri H, Schwalm F, Gabriel G, Klenk HD (2015) Adaptive mutation PB2 D701N promotes nuclear import of influenza vRNPs in mammalian cells. Eur J Cell Biol 94(7–9):368–374. https://doi.org/10.1016/j.ejcb.2015.05.012

    Article  CAS  PubMed  Google Scholar 

  34. Li XY, Shi JZ, Guo J, Deng GH, Zhang QY, Wang JL, He XJ, Wang KC, Chen JM, Li YY, Fan J, Kong HU, Gu CY, Guan YT, Suzuki Y, Kawaoka Y, Liu LL, Jiang YP, Tian GB, Li YB, Bu ZG, Chen HL (2014) Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 avian influenza viruses. Plos Pathog 10(11):e1004508. https://doi.org/10.1371/journal.ppat.1004508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fluhr L, Mor U, Kolodziejczyk AA, Dori-Bachash M, Leshem A, Itav S, Cohen Y, Suez J, Zmora N, Moresi C, Molina S, Ayalon N, Valdes-Mas R, Hornstein S, Karbi H, Kviatcovsky D, Livne A, Bukimer A, Eliyahu-Miller S, Metz A, Brandis A, Mehlman T, Kuperman Y, Tsoory M, Stettner N, Harmelin A, Shapiro H, Elinav E (2021) Gut microbiota modulates weight gain in mice after discontinued smoke exposure. Nature 600(7890):713–719. https://doi.org/10.1038/s41586-021-04194-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by grants from the National Science and Technology Major Project for the Control and Prevention of Major Infectious Diseases in China (2018ZX10711001, 2018ZX10102001, and 2020ZX10101016-004-002), Zhejiang Provincial Natural Science Foundation of China (LY19H260006), and the Independent Task of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (2022ZZ02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal procedures were carried out in accordance with the guidelines established by the Institutional Animal Care and Use Committee.

Additional information

Handling Editor: Ayato Takada.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

705_2022_5536_MOESM1_ESM.png

Supplementary Fig. S1 Location of the D701N substitution found in the PB2 protein of the mouse-adapted virus. The 3D crystal structure of polymerase PB2 (PDB ID: 6QPF) is shown; the green region represents the amino acid substitution at position 701. (PNG 368 kb)

705_2022_5536_MOESM2_ESM.png

Supplementary Fig. S2 Phylogenetic trees based on the eight genes of H9N2 avian influenza viruses. The A/chicken/Zhejiang/221/2016 (H9N2) virus is indicated by a black dot. The scale bar indicates the genetic distance between sequences. (PNG 136 kb)

Supplementary file3 (PNG 156 kb)

Supplementary file4 (PNG 148 kb)

Supplementary file5 (PNG 150 kb)

Supplementary file6 (PNG 152 kb)

Supplementary file7 (PNG 145 kb)

Supplementary file8 (PNG 164 kb)

Supplementary file9 (PNG 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Zhang, X., Liu, F. et al. Rapid emergence of a PB2 D701N substitution during adaptation of an H9N2 avian influenza virus in mice. Arch Virol 167, 2299–2303 (2022). https://doi.org/10.1007/s00705-022-05536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05536-1

Navigation