Skip to main content
Log in

PB2 and hemagglutinin mutations confer a virulent phenotype on an H1N2 avian influenza virus in mice

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We previously obtained mouse-adapted variants of H1N2 avian influenza virus that contained PB2-L134H, PB2-I647L, PB2-D701N, HA-G228S, and M1-D231N mutations. Here, we analyzed the effects of these mutations on viral pathogenicity in a mammalian model. By evaluating the virulence of mouse-adapted H1N2 variants at different generations, we found that the PB2-D701N and HA-G228S mutations both contribute to the virulence of this virus in mammals. Furthermore, we found that the PB2-D701N and HA-G228S mutations both enhance the ability of the virus to replicate in vivo and in vitro and that the PB2-D701N substitution results in an expansion of viral tissue tropism. These results suggest that the PB2-D701N mutation and the HA-G228S mutation are the major mammalian determinants of H1N2 virus. These results help us to understand more about the mechanisms by which influenza viruses adapt to mammals, and monitoring of these mutations can be used in continuous influenza surveillance to assess the pandemic potential of avian influenza virus variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdelwhab EM, Veits J, Ulrich R, Kasbohm E, Teifke JP, Mettenleiter TC (2016) Composition of the hemagglutinin polybasic proteolytic cleavage motif mediates variable virulence of H7N7 avian influenza viruses. Sci Rep 6:39505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arzey GG, Kirkland PD, Arzey KE, Frost M, Maywood P, Conaty S, Hurt AC, Deng YM, Iannello P, Barr I, Dwyer DE, Ratnamohan M, McPhie K, Selleck P (2012) Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia. Emerg Infect Dis 18:814–816

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ayllon J, Hale BG, Garcia-Sastre A (2012) Strain-specific contribution of NS1-activated phosphoinositide 3-kinase signaling to influenza A virus replication and virulence. J Virol 86:5366–5370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berhane Y, Embury-Hyatt C, Leith M, Kehler H, Suderman M, Pasick J (2014) Pre-exposing Canada Geese (Branta canadensis) to a low-pathogenic H1N1 avian influenza virus protects them against H5N1 HPAI virus challenge. J Wildl Dis 50:84–97

    Article  CAS  PubMed  Google Scholar 

  5. Claas EC, Osterhaus AD, van Beek R, De Jong JC, Rimmelzwaan GF, Senne DA, Krauss S, Shortridge KF, Webster RG (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351:472–477

    Article  CAS  PubMed  Google Scholar 

  6. Czudai-Matwich V, Otte A, Matrosovich M, Gabriel G, Klenk HD (2014) PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J Virol 88:8735–8742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Wit E, Kawaoka Y, de Jong MD, Fouchier RA (2008) Pathogenicity of highly pathogenic avian influenza virus in mammals. Vaccine 26(Suppl 4):D54–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DeDiego ML, Nogales A, Lambert-Emo K, Martinez-Sobrido L, Topham DJ (2016) NS1 protein mutation I64T affects interferon responses and virulence of circulating H3N2 human influenza A viruses. J Virol 90:9693–9711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fan S, Deng G, Song J, Tian G, Suo Y, Jiang Y, Guan Y, Bu Z, Kawaoka Y, Chen H (2009) Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology 384:28–32

    Article  CAS  PubMed  Google Scholar 

  10. Fan S, Macken CA, Li C, Ozawa M, Goto H, Iswahyudi NF, Nidom CA, Chen H, Neumann G, Kawaoka Y (2013) Synergistic effect of the PDZ and p85beta-binding domains of the NS1 protein on virulence of an avian H5N1 influenza A virus. J Virol 87:4861–4871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan S, Hatta M, Kim JH, Halfmann P, Imai M, Macken CA, Le MQ, Nguyen T, Neumann G, Kawaoka Y (2014) Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts. Nat Commun 5:5021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gabriel G, Fodor E (2014) Molecular determinants of pathogenicity in the polymerase complex. Curr Top Microbiol Immunol 385:35–60

    PubMed  Google Scholar 

  13. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K, Xu X, Lu H, Zhu W, Gao Z, Xiang N, Shen Y, He Z, Gu Y, Zhang Z, Yang Y, Zhao X, Zhou L, Li X, Zou S, Zhang Y, Li X, Yang L, Guo J, Dong J, Li Q, Dong L, Zhu Y, Bai T, Wang S, Hao P, Yang W, Zhang Y, Han J, Yu H, Li D, Gao GF, Wu G, Wang Y, Yuan Z, Shu Y (2013) Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:1888–1897

    Article  CAS  PubMed  Google Scholar 

  14. Gray GC, McCarthy T, Capuano AW, Setterquist SF, Alavanja MC, Lynch CF (2008) Evidence for avian influenza A infections among Iowa’s agricultural workers. Influenza Other Respir Viruses 2:61–69

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842

    Article  CAS  PubMed  Google Scholar 

  16. He CQ, Liu YX, Wang HM, Hou PL, He HB, Ding NZ (2016) New genetic mechanism, origin and population dynamic of bovine ephemeral fever virus. Vet Microbiol 182:50–56

    Article  CAS  PubMed  Google Scholar 

  17. Hoffmann E, Stech J, Leneva I, Krauss S, Scholtissek C, Chin PS, Peiris M, Shortridge KF, Webster RG (2000) Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? J Virol 74:6309–6315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hou P, Wang H, Zhao G, He C, He H (2017) Rapid detection of infectious bovine Rhinotracheitis virus using recombinase polymerase amplification assays. BMC Vet Res 13:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hou P, Zhao G, He C, Wang H, He H (2018) Biopanning of polypeptides binding to bovine ephemeral fever virus G1 protein from phage display peptide library. BMC Vet Res 14:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu J, Hu Z, Song Q, Gu M, Liu X, Wang X, Hu S, Chen C, Liu H, Liu W, Chen S, Peng D, Liu X (2013) The PA-gene-mediated lethal dissemination and excessive innate immune response contribute to the high virulence of H5N1 avian influenza virus in mice. J Virol 87:2660–2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, Liu W, Bu Z, Kawaoka Y, Chen H (2008) A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol 82:1146–1154

    Article  CAS  PubMed  Google Scholar 

  22. Jiao P, Wei L, Song Y, Cui J, Song H, Cao L, Yuan R, Luo K, Liao M (2014) D701N mutation in the PB2 protein contributes to the pathogenicity of H5N1 avian influenza viruses but not transmissibility in guinea pigs. Front Microbiol 5:642

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ke C, Mok CKP, Zhu W, Zhou H, He J, Guan W, Wu J, Song W, Wang D, Liu J, Lin Q, Chu DKW, Yang L, Zhong N, Yang Z, Shu Y, Peiris JSM (2017) Human infection with highly pathogenic avian influenza A(H7N9) virus. China. Emerg Infect Dis 23:1332–1340

    Article  CAS  PubMed  Google Scholar 

  24. Kobasa D, Takada A, Shinya K, Hatta M, Halfmann P, Theriault S, Suzuki H, Nishimura H, Mitamura K, Sugaya N, Usui T, Murata T, Maeda Y, Watanabe S, Suresh M, Suzuki T, Suzuki Y, Feldmann H, Kawaoka Y (2004) Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431:703–707

    Article  CAS  PubMed  Google Scholar 

  25. Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli I, Kawaoka Y (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74:8502–8512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pappas C, Aguilar PV, Basler CF, Solorzano A, Zeng H, Perrone LA, Palese P, Garcia-Sastre A, Katz JM, Tumpey TM (2008) Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc Natl Acad Sci USA 105:3064–3069

    Article  PubMed  Google Scholar 

  27. Reed LJ, Muench H (1938) A simple method for estimating fifty percent endpoints. Am J Hyg (Lond) 27:493–497

    Google Scholar 

  28. Saito T, Lim W, Suzuki T, Suzuki Y, Kida H, Nishimura SI, Tashiro M (2001) Characterization of a human H9N2 influenza virus isolated in Hong Kong. Vaccine 20:125–133

    Article  CAS  PubMed  Google Scholar 

  29. Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y (2004) PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. Virology 320:258–266

    Article  CAS  PubMed  Google Scholar 

  30. Shu Y (2013) Human infection with H7N9 virus. N Engl J Med 369:880

    Article  PubMed  Google Scholar 

  31. Su S, Bi Y, Wong G, Gray GC, Gao GF, Li S (2015) Epidemiology, evolution, and recent outbreaks of avian influenza virus in China. J Virol 89:8671–8676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun H, Cui P, Song Y, Qi Y, Li X, Qi W, Xu C, Jiao P, Liao M (2015) PB2 segment promotes high-pathogenicity of H5N1 avian influenza viruses in mice. Front Microbiol 6:73

    PubMed  PubMed Central  Google Scholar 

  33. Uraki R, Kiso M, Shinya K, Goto H, Takano R, Iwatsuki-Horimoto K, Takahashi K, Daniels RS, Hungnes O, Watanabe T, Kawaoka Y (2013) Virulence determinants of pandemic A(H1N1)2009 influenza virus in a mouse model. J Virol 87:2226–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang H, Hou P, Zhao G, Yu L, Gao YW, He H (2018) Development and evaluation of serotype-specific recombinase polymerase amplification combined with lateral flow dipstick assays for the diagnosis of foot-and-mouth disease virus serotype A, O and Asia1. BMC Vet Res 14:359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ward AC (1995) Specific changes in the M1 protein during adaptation of influenza virus to mouse. Adv Virol 140:383–389

    CAS  Google Scholar 

  36. Watanabe T, Kiso M, Fukuyama S, Nakajima N, Imai M, Yamada S, Murakami S, Yamayoshi S, Iwatsuki-Horimoto K, Sakoda Y, Takashita E, McBride R, Noda T, Hatta M, Imai H, Zhao D, Kishida N, Shirakura M, de Vries RP, Shichinohe S, Okamatsu M, Tamura T, Tomita Y, Fujimoto N, Goto K, Katsura H, Kawakami E, Ishikawa I, Watanabe S, Ito M, Sakai-Tagawa Y, Sugita Y, Uraki R, Yamaji R, Eisfeld AJ, Zhong G, Fan S, Ping J, Maher EA, Hanson A, Uchida Y, Saito T, Ozawa M, Neumann G, Kida H, Odagiri T, Paulson JC, Hasegawa H, Tashiro M, Kawaoka Y (2013) Characterization of H7N9 influenza A viruses isolated from humans. Nature 501:551–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu H, Peng X, Peng X, Wu N (2016) Amino acid substitutions involved in the adaptation of a novel highly pathogenic H5N2 avian influenza virus in mice. Virol J 13:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu Q, Liu L, Pu J, Zhao J, Sun Y, Shen G, Wei H, Zhu J, Zheng R, Xiong D, Liu X, Liu J (2013) Risk perceptions for avian influenza virus infection among poultry workers, China. Emerg Infect Dis 19:313–316

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yu Z, Sun W, Zhang X, Cheng K, Zhao C, Xia X, Gao Y (2017) Rapid acquisition adaptive amino acid substitutions involved in the virulence enhancement of an H1N2 avian influenza virus in mice. Vet Microbiol 207:97–102

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, de Vries RP, Tzarum N, Zhu X, Yu W, McBride R, Paulson JC, Wilson IA (2015) A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors. Cell Host Microbe 17:377–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao G, Hou P, Huan Y, He C, Wang H, He H (2018) Development of a recombinase polymerase amplification combined with a lateral flow dipstick assay for rapid detection of the Mycoplasma bovis. BMC Vet Res 14:412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao G, Wang H, Hou P, He C, He H (2018) Rapid visual detection of Mycobacterium avium subsp. paratuberculosis by recombinase polymerase amplification combined with a lateral flow dipstick. J Vet Sci 19:242–250

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers and the handling editor for their constructive comments on the paper. This work was supported by the Youth Foundation of the Natural Science Foundation of Shandong Province (ZR2018QC005), the National Key Technology R&D Program (2013BAD12B04), National Key Research and Development Plan (2016YFD0500203) and (2017YFD0500100), the High-Level Talents and Innovative Team Recruitment Program of the Shandong Academy of Agricultural Sciences, High-Level Talent Projects (ts201511069; W03020496), and the Construction of Subjects and Teams of the Institute of Poultry Science (CXGC2018E11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijun Yu, Xianzhu Xia or Yuwei Gao.

Ethics declarations

Disclosure of potential conflict of interest

There are no potential conflicts of interest.

Additional information

Handling Editor: Ayato Takada.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Ren, Z., Zhao, Y. et al. PB2 and hemagglutinin mutations confer a virulent phenotype on an H1N2 avian influenza virus in mice. Arch Virol 164, 2023–2029 (2019). https://doi.org/10.1007/s00705-019-04283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04283-0

Navigation