Skip to main content

Advertisement

Log in

Phylogenomic characterization of historic lumpy skin disease virus isolates from South Africa

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The poxvirus lumpy skin disease virus (LSDV) is the causative agent of the vexatious lumpy skin disease, which predominantly affects cattle and water buffalo. It has been endemic to South Africa since the 1950s, and in 1960, a live attenuated vaccine was commercially released for use in the country to mitigate the spread of this transboundary disease. This vaccine (Neethling/vaccine/LW-1959) was generated from serial passages of the prototype lumpy skin disease virus strain Neethling-WC/RSA/1957, which was isolated in 1957 from an outbreak in the Western Cape province of South Africa and was subsequently used to prove the infectious nature of the virus and the resulting disease in cattle. In this study, we determined the complete genome sequence of the LSDV prototype strain Neethling-WC/RSA/1957, as well as three other LSDV isolates from the 1950s, one wild-type isolate from the 1970s, and a commercial vaccine produced in 1988 (LW-1959). Phylogenomic analysis showed that all six sequences were in cluster 1.1, along with previous sequences of the vaccine strain, the oldest known isolate (LSDV/Haden/RSA/1954), and virulent viruses isolated in the 1990s from South Africa. Seven single-nucleotide polymorphisms were identified between the Neethling-WC/RSA/1957 strain and the vaccine strain (LW-1959), providing new insights into virus attenuation and possible markers for DIVA assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

Information on the country of origin, year of isolation, and GenBank accession number for each of the six genome sequences from this study is provided in Table 1.

References

  1. Sharawi SSA, Abd El-Rahim IHA (2011) The utility of polymerase chain reaction for diagnosis of lumpy skin disease in cattle and water buffaloes in Egypt. Revue Scientifique et Technique de l’OIE 30(3):821–830. https://doi.org/10.20506/rst.30.3.2075

    Article  CAS  PubMed  Google Scholar 

  2. Last RD (2017) Lumpy skin disease of springbok. Hooo Hooo 11(4). https://vet360.vetlink.co.za/lumpy-skin-disease-springbok. Accessed 29 Nov 2017

  3. Molini U, Boshoff E, Niel A, Phillips J, Khaiseb S, Settypalli T, Dundon W, Cattoli G, Lamien C (2021) Detection of lumpy skin disease virus in an asymptomatic eland (Taurotragus oryx) in Namibia. J Wildl Dis. https://doi.org/10.7589/jwd-d-20-00181

    Article  PubMed  Google Scholar 

  4. Alexander RA, Plowright W, Haig DA (1957) Cytopathogenic agents associated with lumpy skin disease of cattle. Bull Epiz Dis Afr 5:489–492

    Google Scholar 

  5. Morris JPA (1931) Pseudo Urticaria of cattle. Department of Animal Health Annual report, Northern Rhodesia (1930), p 20

  6. MacOwen KDS (1959) Observations on the epizootiology of lumpy skin disease during the first year of its occurrence in Kenya. Bull Epiz Dis Afr 7:7–20

    Google Scholar 

  7. Thomas AD, Maré CVE (1945) Knopvelsiekte. J S Afr Vet Med Assoc 16:36–43

    Google Scholar 

  8. van Rooyen PJ, Kumm NAL, Weiss KE, Alexander RA (1959) A preliminary note on the adaptation of a strain of lumpy skin disease virus to propagation in embryonated eggs. Bull Epizoot Dis Afr 7:79

    Google Scholar 

  9. Kara PD, Afonso CL, Wallace DB, Kutish GF, Abolnik C, Lu Z, Vreede FT, Taljaard LCF, Zack A, Viljoen GJ, Rock DL (2003) Comparative sequence analysis of the South African vaccine strain and two virulent field isolates of lumpy skin disease virus. Arc Virol 148:1335–1356. https://doi.org/10.1007/s00705-003-0102-0

    Article  CAS  Google Scholar 

  10. Mathijs E, Vandenbussche F, Haegeman A, King A, Nthangeni B, Potgieter C, Maartens L, Van Borm S, De Clercq K (2016) Complete genome sequences of the neethling-like lumpy skin disease virus strains obtained directly from three commercial live attenuated vaccines. Genome Announc. https://doi.org/10.1128/genomea.01255-16

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lojkić I, Šimić I, Krešić N, Bedeković T (2018) Complete genome sequence of a lumpy skin disease virus strain isolated from the skin of a vaccinated animal. Genome Announc. https://doi.org/10.1128/genomea.00482-18

    Article  PubMed  PubMed Central  Google Scholar 

  12. Douglass N, Van Der Walt A, Omar R, Munyanduki H, Williamson A (2019) The complete genome sequence of the lumpy skin disease virus vaccine Herbivac LS reveals a mutation in the superoxide dismutase gene homolog. Adv Virol 164:3107–3109. https://doi.org/10.1007/s00705-019-04405-8

    Article  CAS  Google Scholar 

  13. Diallo A, Viljoen GJ (2007) Genus capripoxvirus. In: Mercer AA, Schmidt A, Weber O (eds) Poxviruses. Birkhäuser advances in infectious diseases. Birkhäuser, Basel, pp 167–181

    Google Scholar 

  14. Tulman E, Afonso C, Lu Z, Zsak L, Kutish G, Rock D (2001) Genome of lumpy skin disease virus. J Virol 75:7122–7130. https://doi.org/10.1128/jvi.75.15.7122-7130,2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Schalkwyk A, Byadovskaya O, Shumilova I, Wallace D, Sprygin A (2021) Estimating evolutionary changes between highly passaged and original parental lumpy skin disease virus strains. Trans Emerg Dis. https://doi.org/10.1111/tbed.14326

    Article  Google Scholar 

  16. Sprygin A, Babin Y, Pestova Y, Kononova S, Wallace DB, van Schalkwyk A, Byadovskaya O, Diev V, Lozovoy D, Kononov A (2018) Analysis and insights into recombination signals in lumpy skin disease virus recovered in the field. PLoS ONE 13(12):e0207480. https://doi.org/10.1371/journal.pone.0207480

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sprygin A, Van Schalkwyk A, Shumilova I, Nesterov A, Kononova S, Prutnikov P, Byadovskaya O, Kononov A (2020) Full-length genome characterization of a novel recombinant vaccine-like lumpy skin disease virus strain detected during the climatic winter in Russia, 2019. Arch Virol 165:2675–2677. https://doi.org/10.1007/s00705-020-04756-7

    Article  CAS  PubMed  Google Scholar 

  18. Biswas S, Noyce R, Babiuk L, Lung O, Bulach D, Bowden T, Boyle D, Babiuk S, Evans D (2019) Extended sequencing of vaccine and wild-type capripoxvirus isolates provides insights into genes modulating virulence and host range. Transbound Emerg Dis 67:80–97. https://doi.org/10.1111/tbed.13322

    Article  CAS  PubMed  Google Scholar 

  19. van Schalkwyk A, Kara P, Ebersohn K, Mather A, Annandale C, Venter E, Wallace D (2020) Potential link of single nucleotide polymorphisms to virulence of vaccine-associated field strains of lumpy skin disease virus in South Africa. Trans Emerg Dis 67:2946–2960. https://doi.org/10.1111/tbed.13670

    Article  CAS  Google Scholar 

  20. Tran H, Truong A, Dang A, Ly D, Nguyen C, Chu N, Hoang T, Nguyen H, Nguyen V, Dang H (2021) Lumpy skin disease outbreaks in Vietnam, 2020. Trans Emerg Dis 68:977–980. https://doi.org/10.1111/tbed.14022

    Article  Google Scholar 

  21. Flannery J, Shih B, Haga I, Ashby M, Corla A, King S, Freimanis G, Polo N, Tse A, Brackman C, Chan J, Pun P, Ferguson A, Law A, Lycett S, Batten C, Beard P (2021) A novel strain of lumpy skin disease virus causes clinical disease in cattle in Hong Kong. Trans Emerg Dis. https://doi.org/10.1111/tbed.14304

    Article  Google Scholar 

  22. Agianniotaki E, Tasioudi K, Chaintoutis S, Iliadou P, Mangana-Vougiouka O, Kirtzalidou A, Alexandropoulos T, Sachpatzidis A, Plevraki E, Dovas C, Chondrokouki E (2017) Lumpy skin disease outbreaks in Greece during 2015–16, implementation of emergency immunization and genetic differentiation between field isolates and vaccine virus strains. Vet Microbiol 201:78–84. https://doi.org/10.1016/j.Vetmic.2016.12.037

    Article  PubMed  Google Scholar 

  23. Toplak I, Petrović T, Vidanović D, Lazić S, Šekler M, Manić M, Petrović M, Kuhar U (2017) Complete genome sequence of lumpy skin disease virus isolate Serbia/Bujanovac/2016, detected during an outbreak in the Balkan area. Genome Announc. https://doi.org/10.1128/genomea.00882-17

    Article  PubMed  PubMed Central  Google Scholar 

  24. Di Felice E, Pinoni C, Khaiseb S, Camma C, Capobianco Dondona A, Polci A, Molini U, Monaco F (2020) Complete coding sequences of lumpy skin disease virus strains isolated from cutaneous lesions in Namibian cattle during 2016 outbreaks. Microbiol Resource Announc 9:e00124-e220. https://doi.org/10.1128/mra.00124-20

    Article  CAS  Google Scholar 

  25. Kumar N, Chander Y, Kumar R, Khandelwal N, Riyesh T, Chaudhary K, Shanmugasundaram K, Kumar S, Kumar A, Gupta M, Pal Y, Barua S, Tripathi B (2021) Isolation and characterization of lumpy skin disease virus from cattle in India. PLoS ONE 16:e0241022. https://doi.org/10.1371/journal.pone.0241022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu G, Xie J, Luo J, Shao R, Jia K, Li S (2020) Lumpy skin disease outbreaks in China, since 3 August 2019. Transbound Emerg Dis 68:216–219. https://doi.org/10.1111/tbed.13898

    Article  PubMed  Google Scholar 

  27. Tuppurainen E, Dietze K, Wolff J, Bergmann H, Beltran-Alcrudo D, Fahrion A, Lamien C, Busch F, Sauter-Louis C, Conraths F, De Clercq K, Hoffmann B, Knauf S (2021) Review: vaccines and vaccination against lumpy skin disease. Vaccines (Basel) 9:1136. https://doi.org/10.3390/vaccines9101136

    Article  CAS  Google Scholar 

  28. Menasherow S, Rubinstein-Giuni M, Kovtunenko A, Eyngor Y, Fridgut O, Rotenberg D, Khinich Y, Stram Y (2014) Development of an assay to differentiate between virulent and vaccine strains of lumpy skin disease virus (LSDV). J Virol Methods 199:95–101. https://doi.org/10.1016/j.jviromet.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  29. Vidanović D, Šekler M, Petrović T, Debeljak Z, Vasković N, Matović K, Hoffmann B (2016) Real-time PCR assays for the specific detection of field Balkan strains of lumpy skin disease virus. Acta Vet 66:444–454. https://doi.org/10.1515/acve-2016-0038

    Article  Google Scholar 

  30. Agianniotaki E, Chaintoutis S, Haegeman A, Tasioudi K, De Leeuw I, Katsoulos P, Sachpatzidis A, De Clercq K, Alexandropoulos T, Polizopoulou Z, Chondrokouki E, Dovas C (2017) Development and validation of a TaqMan probe-based real-time PCR method for the differentiation of wild type lumpy skin disease virus from vaccine virus strains. J Virol Methods 249:48–57. https://doi.org/10.1016/j.jviromet.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  31. Erster O, Rubinstein M, Menasherow S, Ivanova E, Venter E, Šekler M, Kolarevic M, Stram Y (2019) Importance of the lumpy skin disease virus (LSDV) LSDV126 gene in differential diagnosis and epidemiology and its possible involvement in attenuation. Adv Virol 164:2285–2295. https://doi.org/10.1007/s00705-019-04327-5

    Article  CAS  Google Scholar 

  32. Sprygin A, Babin Y, Pestova Y, Kononova S, Byadovskaya O, Kononov A (2019) Complete genome sequence of the lumpy skin disease virus recovered from the first outbreak in the Northern Caucasus region of Russia in 2015. Microbiol Resour Announc. https://doi.org/10.1128/MRA.01733-18

    Article  PubMed  PubMed Central  Google Scholar 

  33. Boshra H, Truong T, Nfon C, Bowden T, Gerdts V, Tikoo S, Babiuk L, Kara P, Mather A, Wallace D, Babiuk S (2015) A lumpy skin disease virus deficient of an IL-10 gene homologue provides protective immunity against virulent capripoxvirus challenge in sheep and goats. Antivir Res 123:39–49. https://doi.org/10.1016/j.antiviral.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  34. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:547–1549

    Google Scholar 

  35. Babkin IV, Shchelkunov SN (2006) The time scale in poxvirus evolution. Mol Biol (Mosk.) 40:20–24

    Article  CAS  Google Scholar 

  36. Davies FG, Krauss H, Lund J, Taylor M (1971) The laboratory diagnosis of lumpy skin disease. Res Vet Sci 2:123–127

    Article  Google Scholar 

  37. Kara P, Mather A, Pretorius A, Chetty T, Babiuk S, Wallace D (2018) Characterisation of putative immunomodulatory gene knockouts of lumpy skin disease virus in cattle towards an improved vaccine. Vaccine 36:4708–4715. https://doi.org/10.1016/j.vaccine.2018.06.017

    Article  CAS  PubMed  Google Scholar 

  38. Bankamp B, Takeda M, Zhang Y, Xu W, Rota P (2011) Genetic characterization of measles vaccine strains. J Infect Dis 204:S533–S548. https://doi.org/10.1093/infdis/jir097

    Article  PubMed  Google Scholar 

  39. Piccirillo A, Lavezzo E, Niero G, Moreno A, Massi P, Franchin E, Toppo S, Salata C, Palù G (2016) Full genome sequence-based comparative study of wild-type and vaccine strains of infectious laryngotracheitis virus from Italy. PLoS ONE 11:e0149529. https://doi.org/10.1371/journal.pone.0149529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schade-Weskott M, van Schalkwyk A, Koekemoer JJO (2018) A correlation between capsid protein VP2 and the plaque morphology of African horse sickness virus in cell culture. Virus Genes 54(4):527–535. https://doi.org/10.1007/s11262-018-1567-y

    Article  CAS  PubMed  Google Scholar 

  41. Barnard BJH, Munz E, Dumbbell K, Prozesky L (1994) Chapter 52: lumpy skin disease. In: Coetzer JAW, Thomson GR, Tustin RC (eds) Infectious diseases of livestock. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Wallace and Ms. Wemmer for critical reading of this manuscript.

Funding

No specific funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Antoinette van Schalkwyk.

Ethics declarations

Conflict of interest

The authors have no relevant financial, non-financial, or competing interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: William G. Dundon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (FA 912 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Schalkwyk, A., Kara, P. & Heath, L. Phylogenomic characterization of historic lumpy skin disease virus isolates from South Africa. Arch Virol 167, 2063–2070 (2022). https://doi.org/10.1007/s00705-022-05515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05515-6

Navigation