Skip to main content
Log in

Complete genome analysis of the novel Alcaligenes faecalis phage vB_AfaP_QDWS595

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A novel lytic phage named vB_AfaP_QDWS595 infecting Alcaligenes faecalis was isolated and characterized in this study. The genome of phage vB_AfaP_QDWS595 was sequenced and analyzed, and the result revealed that the phage contained 70,466 bp of double-stranded DNA with 41.12% GC content. There were 74 putative genes encoding proteins as well as 11 tRNAs predicted in the phage genome. Phenotype and phylogeny analysis indicated that this phage might be a new member of the family Schitoviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The complete genome sequence of phage vB_AfaP_QDWS595 is available in the GenBank database, with the accession number OK149171.

References

  1. Mordi RM, Yusuf EO, Onemu SO, Igeleke CL, Odjadjare EE (2013) The prevalence of Alcaligenes faecalis in bacteremia, meningitis and wound sepsis in a tertiary Health Care Institution in Western Part of Nigeria. Int J Biotechnol 2(7):123–129

    Google Scholar 

  2. Ashwath ML, Katner HP (2005) Pancreatic abscess secondary to Alcaligenes faecalis. Am J Med Sci. https://doi.org/10.1097/00000441-200501000-00011

    Article  PubMed  Google Scholar 

  3. Knippschild M, Schmid EN, Uppenkamp M et al (1996) Infection by Alcaligenes xylosoxidans subsp. xylosoxidans in neutropenic patients. Oncology 53(3):258–262. https://doi.org/10.1159/000227570

    Article  CAS  PubMed  Google Scholar 

  4. Aisenberg G, Rolston KV, Safdar A (2004) Bacteremia caused by Achromobacter and Alcaligenes species in 46 patients with cancer (1989–2003). Cancer. https://doi.org/10.1002/cncr.20604

    Article  PubMed  Google Scholar 

  5. Mantengoli E, Rossolini GM (2005) Tn5393d, a complex Tn5393 derivative carrying the PER-1 extended-spectrum beta-lactamase gene and other resistance determinants. Antimicrob Agents Chemother 49(8):3289–3296. https://doi.org/10.1128/AAC.49.8.3289-3296.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luo D, Li C, Wu Q, Ding Y, Zhang J (2021) Isolation and characterization of new phage vB_CtuP_A24 and application to control Cronobacter spp. in infant milk formula and lettuce. Food Res Int 141(70):110109. https://doi.org/10.1016/j.foodres.2021.110109

    Article  CAS  PubMed  Google Scholar 

  7. Kazi M, Annapure US (2016) Bacteriophage biocontrol of foodborne pathogens. J Food Sci Technol 53(3):1355–1362. https://doi.org/10.1007/s13197-015-1996-8

    Article  PubMed  Google Scholar 

  8. Royer S, Morais AP, Batisto D (2021) Phage therapy as strategy to face post-antibiotic era: a guide to beginners and experts. Arch Microbiol. https://doi.org/10.1007/s00203-020-02167-5

    Article  PubMed  Google Scholar 

  9. MarÉ IJ, Klerk HCD, Prozesky OW (1963) The morphology of Alcaligenes faecalis bacteriophages. Nature 197(4874):1322–1323. https://doi.org/10.1099/00221287-44-1-23

    Article  Google Scholar 

  10. Zhang W, Mi Z, Yin X et al (2013) Characterization of Enterococcus faecalis Phage IME-EF1 and Its Endolysin. PLoS ONE 2013:8. https://doi.org/10.1371/journal.pone.0080435

    Article  CAS  Google Scholar 

  11. Li M, Li M, Lin H, Wang J, Jin Y, Han F (2016) Characterization of the novel T4-like Salmonella enterica bacteriophage STP4-a and its endolysin. Adv Virol 161(2):377–384. https://doi.org/10.1007/s00705-015-2647-0

    Article  CAS  Google Scholar 

  12. Zhao F, Sun H, Zhou X, Liu G, Li M, Wang C et al (2019) Characterization and genome analysis of a novel bacteriophage vB_SpuP_Spp16 that infects Salmonella enterica serovar pullorum. Virus Genes. https://doi.org/10.1007/s11262-019-01664-0

    Article  PubMed  Google Scholar 

  13. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33(Web Server issue):686–689. https://doi.org/10.1093/nar/gki366

    Article  CAS  Google Scholar 

  14. Lee HJ, Wan IK, Kwon YC, Cha KE, Myung H (2016) A newly isolated bacteriophage, PBES 02, infecting Cronobacter sakazakii. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1605.05020

    Article  PubMed  Google Scholar 

  15. Garneau JR, Depardieu F, Fortier LC, Bikard D, Monot M (2017) Phageterm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 7(1):8292. https://doi.org/10.1038/s41598-017-07910-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yosuke N, Takashi Y, Megumi K, Hideya U, Hiroyuki O, Susumu G (2017) Viptree: the viral proteomic tree server. Bioinformatics 15:15. https://doi.org/10.1093/bioinformatics/btx157

    Article  CAS  Google Scholar 

  17. Wittmann J, Turner D, Millard AD, Mahadevan P, Adriaenssens EM (2020) From orphan phage to a proposed new family-the diversity of n4-like viruses. Antibiotics. https://doi.org/10.3390/antibiotics9100663

    Article  PubMed  PubMed Central  Google Scholar 

  18. Golomidova AK, Kulikov EE, Babenko VV, Kostryukova ES, Letarov AV (2018) Complete genome sequence of bacteriophage St11Ph5, which infects uropathogenic Escherichia coli strain up11. Genome Announc 6(2):e01371-e1417. https://doi.org/10.1128/genomeA.01371-17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (31870166), the National Key Research and Development Program (2017YFD1600703), and China Agriculture Research System (CARS-47). Genome sequencing and assembly were supported by China National GeneBank and the Global Phage Hub project initiated by BGI-Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxue Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 KB)

Supplementary file2 (DOCX 50 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Y., Lin, H., Ning, H. et al. Complete genome analysis of the novel Alcaligenes faecalis phage vB_AfaP_QDWS595. Arch Virol 167, 931–934 (2022). https://doi.org/10.1007/s00705-022-05373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05373-2

Navigation