Skip to main content
Log in

Characterization and genome analysis of a novel bacteriophage vB_SpuP_Spp16 that infects Salmonella enterica serovar pullorum

  • Original Paper
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

A novel virulent bacteriophage vB_SpuP_Spp16 (hereafter designated Spp16) that infects Salmonella enterica serovar pullorum was isolated. Transmission electron microscopy showed that Spp16 possessed an isometric polyhedral head (60 nm in diameter) and a short tail (10 nm in length) belonging to the family Podoviridae. Its complete genome was determined to be 41,832 bp, with a 39.46% GC content by next-generation sequencing. The genome contains 53 proposed open reading frames that are involved in DNA replication and modification, transcriptional regulation, phage structural and packaging proteins and bacterial lysis. No transfer RNA genes were identified. The termini of genome were determined using our previously proposed termini identification method, which suggests that this phage has redundant termini with 421 bp direct terminal repeats. BLASTn analysis revealed the highest sequence similarity with Yersinia phage phi80-18, with a genome coverage of 33% and highest sequence identity of 69%. The phylogenetic analysis indicated that Spp16 forms a distinct branch of the subfamily Autographivirinae. Comparative genomics analysis showed that the phage Spp16 should be regarded as a new subcluster within the GAP227-like cluster in the Autographivirinae subfamily. The phage Spp16 has an obligate lytic life cycle demonstrated by experimental data and genomic analysis. These results suggest that Spp16 may be a proper candidate to control diseases caused by Salmonella enterica serovar pullorum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Foley SL, Lynne AM, Nayak R (2008) Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J Anim Sci 86(14 Suppl):E149

    Article  CAS  PubMed  Google Scholar 

  2. Galanis E, Dm LFW, Patrick ME, Binsztein N, Cieslik A, Chalermchikit T, Aidarakane A, Ellis A, Angulo FJ, Wegener HC (2006) Web-based surveillance and global Salmonella distribution, 2000-2002. Emerg Infect Dis 12(3):381

    Article  PubMed  PubMed Central  Google Scholar 

  3. Capita R, Alvarezastorga M, Alonsocalleja C, Moreno B, Del CGM (2003) Occurrence of salmonellae in retail chicken carcasses and their products in Spain. Int J Food Microbiol 81(2):169–173

    Article  PubMed  Google Scholar 

  4. Elsharkawy H, Tahoun A, Elgohary EGA, Elabasy M, Elkhayat F, Gillespie T, Kitade Y, Hafez HM, Neubauer H, Eladawy H (2017) Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathogens 9(1):8

    Article  CAS  Google Scholar 

  5. Voetsch AC, Van Gilder TJ, Angulo FJ, Farley MM, Shallow S, Marcus R, Cieslak PR, Deneen VC, Tauxe RV (2004) FoodNet estimate of the burden of illness caused by nontyphoidal Salmonella infections in the United States. Clin Infect Dis 38(Suppl 3):S127

    Article  PubMed  Google Scholar 

  6. Medina E, Pieper DH (2016) Tackling threats and future problems of multidrug-resistant bacteria. Curr Top Microbiol Immunol 398:3–33

    CAS  PubMed  Google Scholar 

  7. Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11(1):58

    Article  CAS  PubMed  Google Scholar 

  8. Akhtar M, Viazis S, Diez-Gonzalez F (2014) Isolation, identification and characterization of lytic, wide host range bacteriophages from waste effluents against Salmonella enterica serovars. Food Control 38(1):67–74

    Article  Google Scholar 

  9. Adams MH (1959) Bacteriophages. Intercience Publishers Inc, New York

    Google Scholar 

  10. Ackermann HW (2009) Basic phage electron microscopy. Methods Mol Biol 501:113

    Article  CAS  PubMed  Google Scholar 

  11. Chen M, Xu J, Yao H, Lu C, Zhang W (2016) Isolation, genome sequencing and functional analysis of two T7-like coliphages of avian pathogenic Escherichia coli. Gene 582(1):47–58

    Article  CAS  PubMed  Google Scholar 

  12. Chen Y, Sun E, Song J, Yang L, Wu B (2018) Complete genome sequence of a novel T7-like bacteriophage from a pasteurella multocida capsular type A isolate. Curr Microbiol 75(5):574–579

    Article  CAS  PubMed  Google Scholar 

  13. Postic B, Finland M (1961) Observations on bacteriophage typing of Pseudomonas aeruginosa. J Clin Investig 40(11):2064–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu S, Le S, Tan Y, Zhu J, Li M, Rao X, Zou L, Li S, Wang J, Jin X (2013) Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages. PLoS ONE 8(5):e62933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li S, Fan H, An X, Fan H, Jiang H, Chen Y, Tong Y (2014) Scrutinizing virus genome termini by high-throughput sequencing. PLoS ONE 9(1):e85806–e85806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li S, Fan H, An X, Fan H, Jiang H, Chen Y, Tong Y (2014) Scrutinizing virus genome termini by high-throughput sequencing. PLoS ONE 9(1):e85806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST server: rapid annotations using subsystems technology. Bmc Genom 9(1):75

    Article  CAS  Google Scholar 

  18. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes: implications for finding sequence motifs in regulatory regions. Nucl Acids Res 29(12):2607–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marchlerbauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, Deweesescott C, Fong JH, Geer LY, Geer RC, Gonzales NR (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucl Acids Res 39:225–229

    Article  CAS  Google Scholar 

  20. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucl Acids Res 33:W686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Krogh A, Larsson B, Heijne GV, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  PubMed  Google Scholar 

  22. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST server: rapid annotations using subsystems technology. Bmc Genom 9(8):75

    Article  CAS  Google Scholar 

  23. Krumsiek J, Arnold R, Rattei T (2007) Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23(8):1026–1028

    Article  CAS  PubMed  Google Scholar 

  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB (2018) Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucl Acids Res 46:D708–D717

    Article  CAS  PubMed  Google Scholar 

  26. Nechaev S, Severinov K (2003) Bacteriophage-induced modifications of host RNA polymerase. Annu Rev Microbiol 57:301–322. https://doi.org/10.1146/annurev.micro.57.030502.090942

    Article  CAS  PubMed  Google Scholar 

  27. Dh Krüger, Schroeder C (1981) Bacteriophage T3 and bacteriophage T7 virus-host cell interactions. Microbiol Rev 45(1):9

    Google Scholar 

  28. Fujisawa H, Morita M (1997) Phage DNA packaging. Genes Cell 2(9):537

    Article  CAS  Google Scholar 

  29. Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300(6):357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gründling A, Manson MD, Young R (2001) Holins kill without warning. Proc Natl Acad Sci USA 98(16):9348

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shi Y, Yan Y, Ji W, Du B, Meng X, Wang H, Sun J (2012) Characterization and determination of holin protein of Streptococcus suisbacteriophage SMP in heterologous host. Virol J 9(1):70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yannick B, Lars F, Janine M, Rudi L, Brion D, Loessner MJ (2011) Novel virulent and broad-host-range Erwinia amylovora bacteriophages reveal a high degree of mosaicism and a relationship to Enterobacteriaceae phages. Appl Environ Microbiol 77(17):5945–5954

    Article  CAS  Google Scholar 

  33. Inmaculada GH, Francisco RV, Ana-Belen MC (2013) Novel group of podovirus infecting the marine bacterium Alteromonas macleodii. Bacteriophage 3(2):e24766

    Article  Google Scholar 

  34. Daudén MI, Martínbenito J, Sánchezferrero JC, Pulidocid M, Valpuesta JM, Carrascosa JL (2013) Large terminase conformational change induced by connector binding in bacteriophage T7. J Biol Chem 288(23):16998–17007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Benson SD, Bamford JKH, Bamford DH, Burnett RM (1999) Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98(6):825–833

    Article  CAS  PubMed  Google Scholar 

  36. Grose JH, Casjens SR (2014) Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468–470:421–443

    Article  CAS  PubMed  Google Scholar 

  37. Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8(3):162–173

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Guangqian Pei, Yunfei Wang, Yonghuan Wang, and Yibao Chen for their help during this work.

Funding

This study was funded by the Nature Science Foundation of Shandong Province of China (grant no. ZR2015CM020), and the State Key Laboratory of Pathogen and biosecurity (SKLPBS1518).

Author information

Authors and Affiliations

Authors

Contributions

Yigang Tong and Huiying Ren conceived and designed the experiments and critically evaluated the manuscript. Feiyang Zhao carried out the data analysis and wrote the manuscript. Guangqin Liu isolated and identified the phage. Huzhi Sun and Xiangying Zhou carried out the experiments. Manli Li analyzed the phage sequences. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yigang Tong or Huiying Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by Joachim Jakob Bugert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Sun, H., Zhou, X. et al. Characterization and genome analysis of a novel bacteriophage vB_SpuP_Spp16 that infects Salmonella enterica serovar pullorum. Virus Genes 55, 532–540 (2019). https://doi.org/10.1007/s11262-019-01664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-019-01664-0

Keywords

Navigation