Skip to main content
Log in

A new picorna-like virus identified in populations of the potato psyllid Bactericera cockerelli

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The potato/tomato psyllid Bactericera cockerelli (Hemiptera: Triozidae) is a pest of Solanaceae plants and a vector of the pathogenic bacterium ‘Candidatus Liberibacter solanacearum’, which is associated with zebra chip disease in potato. This disease is controlled through insecticide treatments, and more environmentally friendly management options are desirable. The objective of this study was to identify viruses present in potato psyllid populations that might be used as biocontrol agents for this insect pest. A new picorna-like virus, tentatively named “Bactericera cockerelli picorna-like virus” (BcPLV), was discovered in B. cockerelli populations maintained in greenhouses, through the use of high-throughput sequencing data and subsequent confirmation by RT-PCR and Sanger sequencing. BcPLV has a positive-sense 9,939-nt RNA genome encoding a single 2,947-aa polyprotein and is related to the Diaphorina citri picorna-like virus (DcPLV) found in Asian citrus psyllid Diaphorina citri populations. Based on their genome organization and the phylogeny of their RNA-dependent RNA polymerase domains, BcPLV and DcPLV together are proposed to comprise a new genus, provisionally named "Psylloidivirus", within the family Iflaviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Availability of data and material

All data are supplied as a supplementary file (not for publication).

References

  1. Wallis RL (1955) Ecological studies on the potato psyllid as a pest of potatoes. USDA Tech Bull 1107:24

    Google Scholar 

  2. Munyaneza JE (2015) Zebra chip disease, Candidatus Liberibacter, and potato psyllid: a global threat to the potato industry. Am J Potato Res 92:230–235. https://doi.org/10.1007/s12230-015-9448-6

    Article  Google Scholar 

  3. Butler CD, Trumble JT (2012) Spatial dispersion and binomial sequential sampling for the potato psyllid (Hemiptera: Triozidae) on potato. Pest Manag Sci 68:865–869. https://doi.org/10.1002/ps.3242

    Article  CAS  PubMed  Google Scholar 

  4. Munyaneza JE (2012) Zebra chip disease of potato: biology, epidemiology, and management. Am J Potato Res 89:329–350. https://doi.org/10.1007/s12230-012-9262-3

    Article  Google Scholar 

  5. Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88:7–37. https://doi.org/10.4454/jpp.v88i1.828

    Article  Google Scholar 

  6. Gottwald TR (2010) Current epidemiological understanding of citrus Huanglongbing. Annu Rev Phytopathol 48:119–139. https://doi.org/10.1146/annurev-phyto-073009-114418

    Article  CAS  PubMed  Google Scholar 

  7. da Graça JV, Douhan GW, Halbert SE et al (2016) Huanglongbing: an overview of a complex pathosystem ravaging the world’s citrus. J Integr Plant Biol 58:373–387. https://doi.org/10.1111/jipb.12437

    Article  PubMed  Google Scholar 

  8. Britt K, Gebben S, Levy A et al (2020) The detection and surveillance of Asian citrus psyllid (Diaphorina citri) - associated viruses in Florida citrus groves. Front Plant Sci 10:1687. https://doi.org/10.3389/fpls.2019.01687

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nouri S, Salem N, Nigg JC, Falk BW (2016) Diverse array of new viral sequences identified in worldwide populations of the Asian citrus psyllid (Diaphorina citri) using viral metagenomics. J Virol 90:2434–2445. https://doi.org/10.1128/JVI.02793-15

    Article  CAS  PubMed Central  Google Scholar 

  10. Nouri S, Salem N, Falk BW (2016) Complete genome sequence of Diaphorina citri-associated C virus, a novel putative RNA virus of the Asian citrus psyllid, Diaphorina citri. Genome Announc 4:e00639-e716

    Article  Google Scholar 

  11. Fisher TW, Vyas M, He R et al (2014) Comparison of potato and Asian citrus psyllid adult and nymph transcriptomes identified vector transcripts with potential involvement in circulative, propagative Liberibacter transmission. Pathogens 3:875–907. https://doi.org/10.3390/pathogens3040875

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bushmanova E, Antipov D, Lapidus A, Prjibelski AD (2019) rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience. https://doi.org/10.1093/gigascience/giz100

    Article  PubMed  PubMed Central  Google Scholar 

  13. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crosslin JM, Lin H, Munyaneza JE (2011) Detection of “Candidatus Liberibacter solanacearum” in the potato psyllid, Bactericera cockerelli (Sulc), by conventional and real-time PCR. Southwest Entomol 36:125–135. https://doi.org/10.3958/059.036.0202

    Article  Google Scholar 

  15. Cooper WR, Swisher KD, Garczynski SF et al (2015) Wolbachia infection differs among divergent mitochondrial haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Ann Entomol Soc Am 108:137–145. https://doi.org/10.1093/aesa/sau048

    Article  CAS  Google Scholar 

  16. Swisher KD, Munyaneza JE, Crosslin JM (2012) High resolution melting analysis of the Cytochrome Oxidase I gene identifies three haplotypes of the potato psyllid in the United States. Environ Entomol 41:1019–1028. https://doi.org/10.1603/EN12066

    Article  CAS  Google Scholar 

  17. Le Gall O, Christian P, Fauquet CM et al (2008) Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Arch Virol 153:715. https://doi.org/10.1007/s00705-008-0041-x

    Article  CAS  PubMed  Google Scholar 

  18. Wolf YI, Kazlauskas D, Iranzo J et al (2018) Origins and evolution of the global RNA virome. MBio 9:e02329-18. https://doi.org/10.1128/mBio.02329-18

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  21. Kalyaanamoorthy S, Minh BQ, Wong TKF et al (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoang DT, Chernomor O, von Haeseler A et al (2018) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. https://doi.org/10.1093/molbev/msx281

    Article  CAS  PubMed  Google Scholar 

  23. Valles SM, Chen Y, Firth AE et al (2017) ICTV virus taxonomy profile: Iflaviridae. J Gen Virol 98:527–528. https://doi.org/10.1099/jgv.0.000757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Erik Wenninger (Kimberly Research and Extension Center, University of Idaho) for providing local psyllids collected in potato fields.

Funding

This research was funded in part through grants from the USDA-ARS, the Idaho State Department of Agriculture Specialty Crop Block Grant Program, USDA-NIFA Hatch Project IDA01560, the ARS/State Potato Partnership Program, and the Idaho Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Karasev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Simona Abba'.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Supplementary file2 (TXT 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahan, J., Cooper, W.R., Munyaneza, J.E. et al. A new picorna-like virus identified in populations of the potato psyllid Bactericera cockerelli. Arch Virol 167, 177–182 (2022). https://doi.org/10.1007/s00705-021-05281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05281-x

Navigation