Skip to main content
Log in

A new bipartite begomovirus naturally infecting Pyrenacantha sp. in Mozambique

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A begomovirus was isolated from a Pyrenacantha sp. plant with yellow mosaic symptoms collected in a maize production field in Mozambique. The complete DNA-A and DNA-B components have a genomic organization typical of Old World, bipartite begomoviruses. Based on the current ICTV species demarcation criteria for the genus Begomovirus, the virus isolate, named Pyrenacantha yellow mosaic virus (PyYMV), is a member of a new species, for which the name "Begomovirus pyrenacanthae" is proposed. Alignment of their common regions (CR) indicated a 35-nt insertion in the DNA-A CR. The nt sequence identity between the CRs is only 83% but increases to 96% when the 35-nt insertion is removed from the alignment. This is the first report of a begomovirus naturally infecting Pyrenacantha spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability statement

The sequences described in this study were deposited in GenBank under accession numbers MZ390982-MZ390894.

References

  1. Rojas MR, Macedo MA, Maliano MR, Soto-Aguilar M, Souza JO, Briddon RW, Kenyon LA, Rivera-Bustamante RF, Zerbini FM, Adkins S, Legg JP, Kvarnheden A, Wintermantel WM, Sudarshana MR, Peterschmitt M, Lapidot M, Martin DP, Moriones E, Inoue-Nagata AK, Gilbertson RL (2018) World management of geminiviruses. Annu Rev Phytopathol 56:637–677

    Article  CAS  Google Scholar 

  2. Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, Rivera-Bustamante R, Varsani A, ICTV Consortium (2017) ICTV virus taxonomy profile: Geminiviridae. J Gen Virol 98:131–133

    Article  CAS  Google Scholar 

  3. Padidam M, Beachy RN, Fauquet CM (1996) The role of AV2 (“precoat”) and coat protein in viral replication and movement in tomato leaf curl geminivirus. Virology 224:390–404

    Article  CAS  Google Scholar 

  4. Mansoor S, Briddon RW, Zafar Y, Stanley J (2003) Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8:128–134

    Article  CAS  Google Scholar 

  5. Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    Article  CAS  Google Scholar 

  6. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11:777–788

    Article  CAS  Google Scholar 

  7. Lazarowitz SG, Beachy RN (1999) Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11:535–548

    Article  CAS  Google Scholar 

  8. Brown JK, Zerbini FM, Navas-Castillo J, Moriones E, Ramos-Sobrinho R, Silva JC, Fiallo-Olive E, Briddon RW, Hernandez-Zepeda C, Idris A, Malathi VG, Martin DP, Rivera-Bustamante R, Ueda S, Varsani A (2015) Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 160:1593–1619

    Article  CAS  Google Scholar 

  9. Arguello-Astorga G, Herrera-Estrella L, Rivera-Bustamante R (1994) Experimental and theoretical definition of geminivirus origin of replication. Plant Mol Biol 26:553–556

    Article  CAS  Google Scholar 

  10. Arguello-Astorga GR, Guevara-González RG, Herrera-Estrella LR, Rivera-Bustamante RF (1994) Geminivirus replication origins have a group-specific organization of interative elements: a model for replication. Virology 203:90–100

    Article  CAS  Google Scholar 

  11. Hyde MA, Wursten BT, Ballings P, Coates Palgrave M (2021) Flora of Mozambique: Species information: Pyrenacantha kaurabassana. https://www.mozambiqueflora.com/speciesdata/species.php?species_id=137280. Accessed 26 Jul 2021

  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  13. Inoue-Nagata AK, Albuquerque LC, Rocha WB, Nagata T (2004) A simple method for cloning the complete begomovirus genome using the bacteriophage phi29 DNA polymerase. J Virol Met 116:209–211

    Article  CAS  Google Scholar 

  14. Sambrook J, Russel D (2001) Molecular cloning—a laboratory manual, 3a edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  16. Muhire BM, Varsani A, Martin DP (2014) SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9:e108277

    Article  Google Scholar 

  17. Silva JCF, Carvalho TFM, Basso MF, Deguchi M, Pereira WA, Sobrinho RR, Vidigal PMP, Brustolini OJB, Silva FF, Dal-Bianco M, Fontes RLF, Santos AA, Zerbini FM, Cerqueira FR, Fontes EPB (2017) Geminivirus data warehouse: a database enriched with machine learning approaches. BMC Bioinform 18:240

    Article  Google Scholar 

  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  Google Scholar 

  19. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  Google Scholar 

  20. Arguello-Astorga GR, Ruiz-Medrano R (2001) An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-base pairs by a comparative approach. Arch Virol 146:1465–1485

    Article  CAS  Google Scholar 

  21. Martin D, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003

    Article  Google Scholar 

  22. García-Andrés S, Monci F, Navas-Castillo J, Moriones E (2006) Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: evidence for the presence of a new virus species of recombinant nature. Virology 350:433–442

    Article  Google Scholar 

  23. Silva SJC, Castillo-Urquiza GP, Hora-Júnior BT, Assunção IP, Lima GSA, Pio-Ribeiro G, Mizubuti ESG, Zerbini FM (2011) High genetic variability and recombination in a begomovirus population infecting the ubiquitous weed Cleome affinis in northeastern Brazil. Arch Virol 156:2205–2213

    Article  Google Scholar 

  24. Ferro CG, Silva JP, Xavier CAD, Godinho MT, Lima ATM, Mar TB, Lau D, Zerbini FM (2017) The ever increasing diversity of begomoviruses infecting non-cultivated hosts: new species from Sida spp. and Leonurus sibiricus, plus two New World alphasatellites. Ann Appl Biol 170:204–218

    Article  CAS  Google Scholar 

  25. Haydon DT, Cleaveland S, Taylor LH, Laurenson MK (2002) Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis 8:1468–1473

    Article  Google Scholar 

  26. Sande OFL, Orílio AF, Chipiringo BAI, Xavier CAD, Zerbini FM (2021) Speciation driven by recombination in the evolution of tomato curly stunt virus in Mozambique. Plant Pathol 70:994–1002

    Article  CAS  Google Scholar 

  27. García-Arenal F, Zerbini FM (2019) Life on the edge: geminiviruses at the interface between crops and wild plant hosts. Annu Rev Virol 6:411–433

    Article  Google Scholar 

  28. Roossinck MJ, Garcia-Arenal F (2015) Ecosystem simplification, biodiversity loss and plant virus emergence. Curr Opin Virol 10:56–62

    Article  Google Scholar 

  29. Costa C, Delgado C (2019) The cassava value chain in mozambique. In: Jobs Working Paper no. 31. World Bank, Washington, DC. https://openknowledge.worldbank.org/handle/10986/31754

  30. Haber LL, Carvalho CE, Bowen W, Resende FV (2015) Horticultura em Moçambique: caracteristicas, tecnologias de produção e de pós-colheita [Horticulture in Mozambique: features, production and post-harvest technologies]. Embrapa, Brasília, DF

Download references

Acknowledgements

The authors gratefully acknowledge the technical staff at the Fac. de Ciências Agrárias, Unizambeze, for their assistance in sample collection and processing.

Funding

This work was funded by CAPES (financial code 001), CNPq (409599/2016-6) and Fapemig (APQ-03276-18) grants to FMZ. BAIC was supported by a doctoral fellowship from Instituto de Bolsas de Estudos de Moçambique. OFLS was supported by a doctoral fellowship from Ministério da Ciência e Tecnologia, Ensino Superior e Técnico Profissional de Moçambique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Murilo Zerbini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Jesús Navas-Castillo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

705_2021_5276_MOESM1_ESM.docx

Bayesian phylogenetic tree based on the full-length nucleotide sequences of the DNA-B of PyYMV (marked in red) and related begomoviruses. Labels indicate their abbreviations and GenBank access numbers. Nodes with posterior probability values between 0.5 and 0.79 are indicated by gray circles, and nodes with values equal to or greater than 0.8 are indicated by black circles. The scale bar represents the number of nucleotide substitutions per site. ACMV, African cassava mosaic virus; ACMBFV, African cassava mosaic Burkina Faso virus; AsMMV, asystasia mosaic Madagascar virus; CMMGV, cassava mosaic Madagascar virus; CYMV, cotton yellow mosaic virus; DMV, deinbollia mosaic virus; DesMoV, desmodium mottle virus; EACMV/UG and /TZ, East African cassava mosaic virus Uganda and Tanzania strains, respectively; EACMCMV, East African cassava mosaic Cameroon virus; EACMKV, East African cassava mosaic Kenya virus; EACMZV, East African cassava mosaic Zimbabwe virus; SACMV, South African cassava mosaic virus; SbCBV, soybean chlorotic blotch virus. The tree is rooted with the New World begomovirus bean golden mosaic virus (BGMV).

Supplementary file1 (DOCX 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chipiringo, B.A.I., Silva, J.P., Cascardo, R.S. et al. A new bipartite begomovirus naturally infecting Pyrenacantha sp. in Mozambique. Arch Virol 167, 239–243 (2022). https://doi.org/10.1007/s00705-021-05276-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05276-8

Navigation