Skip to main content
Log in

Sugarcane mosaic virus remodels multiple intracellular organelles to form genomic RNA replication sites

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Positive-stranded RNA viruses usually remodel the host endomembrane system to form virus-induced intracellular vesicles for replication during infections. The genus Potyvirus of the family Potyviridae represents the largest number of positive single-stranded RNA viruses, and its members cause great damage to crop production worldwide. Although potyviruses have a wide host range, each potyvirus infects a relatively limited number of host species. Phylogenesis and host range analysis can divide potyviruses into monocot-infecting and dicot-infecting groups, suggesting that they differ in their infection mechanisms, probably during replication. Comprehensive studies on the model dicot-infecting turnip mosaic virus have shown that the 6K2-induced replication vesicles are derived from the endoplasmic reticulum (ER) and subsequently target chloroplasts for viral genome replication. However, the replication site of monocot-infecting potyviruses is unknown. In this study, we show that the precursor 6K2-VPg-Pro polyproteins of dicot-infecting potyviruses and monocot-infecting potyviruses cluster phylogenetically in two separate groups. With a typical gramineae-infecting potyvirus—sugarcane mosaic virus (SCMV)—we found that replicative double-stranded RNA (dsRNA) forms aggregates in the cytoplasm but does not associate with chloroplasts. SCMV 6K2-VPg-Pro-induced vesicles colocalize with replicative dsRNA. Moreover, SCMV 6K2-VPg-Pro-induced structures target multiple intracellular organelles, including the ER, Golgi apparatus, mitochondria, and peroxisomes, and have no evident association with chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahlquist P, Noueiry AO, Lee WM, Kushner DB, Dye BT (2003) Host factors in positive-strand RNA virus genome replication. J Virol 77:8181–8186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Belov GA, van Kuppeveld FJM (2012) (+)RNA viruses rewire cellular pathways to build replication organelles. Curr Opin Virol 2:740–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nagy PD, Pogany J (2011) The dependence of viral RNA replication on co-opted host factors. Nat Rev Microbiol 10:137–149

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cho MW, Teterina N, Egger D, Bienz K, Ehrenfeld E (1994) Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology 202:129–145

    Article  CAS  PubMed  Google Scholar 

  5. Barco A, Carrasco L (1995) Human virus protein, poliovirus protein 2bc, induces membrane proliferation and blocks the exocytic pathway in the yeast Saccharomyces Cerevisiae. EMBO J 14:3349–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laliberté JF, Sanfaçon H (2010) Cellular remodeling during plant virus infection. Annu Rev Phytopathol 48:69–91

    Article  PubMed  Google Scholar 

  7. Martin MT, Cervera MT, Garcia JA, Bonay P (1995) Properties of the active plum pox potyvirus RNA polymerase complex in defined glycerol gradient fractions. Virus Res 37:127–137

    Article  CAS  PubMed  Google Scholar 

  8. Schaad MC, Jensen PE, Carrington JC (1997) Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16:4049–4059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carette JE, Stuiver M, van Lent J, Wellink J, van Kammen A (2000) Cowpea mosaic virus infection induces a massive proliferation of endoplasmic reticulum but not Golgi membranes and is dependent on de novo membrane synthesis. J Virol 74:6556–6563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suhy DA, Giddings TH, Kirkegaard K (2000) Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74:8953–8965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwartz M, Chen J, Janda M, Sullivan M, den Boon J, Ahlquist P (2002) A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9:505–514

    Article  CAS  PubMed  Google Scholar 

  12. Nishikiori M, Dohi K, Mori M, Meshi T, Naito S, Ishikawa M (2006) Membrane-bound tomato mosaic virus replication proteins participate in RNA synthesis and are associated with host proteins in a pattern distinct from those that are not membrane bound. J Virol 80:8459–8468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bamunusinghe D, Hemenway CL, Nelson RS, Sanderfoot AA, Ye CM, Silva MAT et al (2009) Analysis of potato virus X replicase and TGBp3 subcellular locations. Virology 393:272–285

    Article  CAS  PubMed  Google Scholar 

  14. Hatta T, Bullivant S, Matthews RE (1973) Fine structure of vesicles induced in chloroplasts of Chinese cabbage leaves by infection with turnip yellow mosaic virus. J Gen Virol 20:37–50

    Article  CAS  PubMed  Google Scholar 

  15. Weber-Lotfi F, Dietrich A, Russo M, Rubino L (2002) Mitochondrial targeting and membrane anchoring of a viral replicase in plant and yeast cells. J Virol 76:10485–10496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hagiwara Y, Komoda K, Yamanaka T, Tamai A, Meshi T, Funada R et al (2003) Subcellular localization of host and viral proteins associated with tobamovirus RNA replication. EMBO J 22:344–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pouwels J, van der Velden T, Willemse J, Borst JW, van Lent J, Bisseling T et al (2004) Studies on the origin and structure of tubules made by the movement protein of cowpea mosaic virus. J Gen Virol 85:3787–3796

    Article  CAS  PubMed  Google Scholar 

  18. Goodin M, Yelton S, Ghosh D, Mathews S, Lesnaw J (2005) Live-cell imaging of rhabdovirus-induced morphological changes in plant nuclear membranes. Mol Plant-Microbe Interact 18:703–709

    Article  CAS  PubMed  Google Scholar 

  19. McCartney AW, Greenwood JS, Fabian MR, White KA, Mullen RT (2005) Localization of the tomato bushy stunt virus replication protein p33 reveals a peroxisome-to-endoplasmic reticulum sorting pathway. Plant Cell 17:3513–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wileman T (2006) Aggresomes and autophagy generate sites for virus replication. Science 312:875–878

    Article  CAS  PubMed  Google Scholar 

  21. Ivanov KI, Eskelin K, Lõhmus A, Mäkinen K (2014) Molecular and cellular mechanisms underlying potyvirus infection. J Gen Virol 95:1415–1429

    Article  CAS  PubMed  Google Scholar 

  22. Revers F, García JA (2015) Molecular biology of potyviruses. Adv Virus Res 92:101–199

    Article  CAS  PubMed  Google Scholar 

  23. Urcuqui-Inchima S, Haenni AL, Bernardi F (2001) Potyvirus proteins: a wealth of functions. Virus Res 74:157–175

    Article  CAS  PubMed  Google Scholar 

  24. Chung BYW, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105:5897–5902

    Article  CAS  PubMed  Google Scholar 

  25. Olspert A, Chung BYW, Atkins JF, Carr JP, Firth AE (2015) Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep 16:995–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beauchemin C, Boutet N, Laliberté JF (2007) Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta. J Virol 81:775–782

    Article  CAS  PubMed  Google Scholar 

  27. Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei T et al (2009) Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J Virol 83:10460–10471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cui X, Wei T, Chowda-Reddy RV, Sun G, Wang A (2010) The tobacco etch virus P3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments. Virology 397:56–63

    Article  CAS  PubMed  Google Scholar 

  29. Wan J, Basu K, Mui J, Vali H, Zheng H, Laliberté JF (2015) Ultrastructural characterization of turnip mosaic virus-induced cellular rearrangements reveals membrane-bound viral particles accumulating in vacuoles. J Virol 89:12441–12456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cui H, Wang A (2016) Plum pox virus 6K1 protein is required for viral replication and targets the viral replication complex at the early stage of infection. J Virol 90:5119–5131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. den Boon JA, Diaz A, Ahlquist P (2010) Cytoplasmic viral replication complexes. Cell Host Microbe 8:77–85

    Article  Google Scholar 

  32. Wang A (2015) Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol 53:45–66

    Article  CAS  PubMed  Google Scholar 

  33. Gadh IP, Hari V (1986) Association of tobacco etch virus related RNA with chloroplasts in extracts of infected plants. Virology 150:304–307

    Article  CAS  PubMed  Google Scholar 

  34. Gunasinghe UB, Berger PH (1991) Association of potato virus-Y gene-products with chloroplasts in tobacco. Mol Plant-Microbe Interact 4:452–457

    Article  CAS  Google Scholar 

  35. Wei T, Huang TS, McNeil J, Laliberté JF, Hong J, Nelson RS et al (2010) Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. J Virol 84:799–809

    Article  CAS  PubMed  Google Scholar 

  36. Cheng X, Deng P, Cui HG, Wang A (2015) Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation. Virology 485:439–451

    Article  CAS  PubMed  Google Scholar 

  37. Gibbs A, Ohshima K (2010) Potyviruses and the digital revolution. Annu Rev Phytopathol 48:205–223

    Article  CAS  PubMed  Google Scholar 

  38. Moury B, Desbiez C (2020) Host range evolution of potyviruses: a global phylogenetic analysis. Viruses 12:111

    Article  PubMed Central  Google Scholar 

  39. Pechanova O, Pechan T (2015) Maize-pathogen interactions: an ongoing combat from a proteomics perspective. Int J Mol Sci 16:28429–28448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B et al (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47:151–157

    Article  CAS  PubMed  Google Scholar 

  41. Shukla DD, Tosic M, Jilka J, Ford RE, Toler RW, Langham MAC (1989) Taxonomy of potyviruses infecting maize, sorghum, and sugarcane in Australia and the United States as determined by reactivities of polyclonal antibodies directed towards virus-specific N-termini of coat proteins. Phytopathology 79:223–229

    Article  CAS  Google Scholar 

  42. Xiao XW, Frenkel MJ, Teakle DS, Ward CW, Shukla DD (1993) Sequence diversity in the surface-exposed amino-terminal region of the coat proteins of seven strains of sugarcane mosaic virus correlates with their host range. Arch Virol 132:399–408

    Article  CAS  PubMed  Google Scholar 

  43. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166

    Article  CAS  PubMed  Google Scholar 

  44. Liu W (2015) Studies on the construction strategy of infectious clones of Sugarcane mosaic virus. Dissertation, China Agricultural University, Beijing

  45. Laliberté JF, Nicolas O, Chatel H, Lazure C, Morosoli R (1992) Release of a 22-kDa protein derived from the amino-terminal domain of the 49-kDa Nla of turnip mosaic potyvirus in Escherichia coli. Virology 190:510–514

    Article  PubMed  Google Scholar 

  46. Goodin MM, Dietzgen RG, Schichnes D, Ruzin S, Jackson AO (2002) pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31:375–383

    Article  CAS  PubMed  Google Scholar 

  47. Fan ZF, Chen HY, Liang XM, Li HF (2003) Complete sequence of the genomic RNA of the prevalent strain of a potyvirus infecting maize in China. Arch Virol 148:773–782

    Article  CAS  PubMed  Google Scholar 

  48. Cao Y, Shi Y, Li Y, Cheng Y, Zhou T, Fan Z (2012) Possible involvement of maize Rop1 in the defence responses of plants to viral infection. Mol Plant Pathol 13:732–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sheen J (1991) Molecular mechanisms underlying the differential expression of maize pyruvate, orthophosphate dikinase genes. Plant Cell 3:225–245

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang R, Yang X, Wang N, Liu X, Nelson RS, Li W et al (2016) An efficient virus-induced gene silencing vector for maize functional genomics research. Plant J 86:102–115

    Article  CAS  PubMed  Google Scholar 

  51. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  52. Kirienko DR, Luo A, Sylvester AW (2012) Reliable transient transformation of intact maize leaf cells for functional genomics and experimental study. Plant Physiol 159:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  CAS  PubMed  Google Scholar 

  54. Qu F, Morris TJ (2002) Efficient infection of Nicotiana benthamiana by tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing. Mol Plant Microbe Interact 15:193–202

    Article  CAS  PubMed  Google Scholar 

  55. Chen H, Cao H, Li Y, Xia Z, Xie J, Carr JP et al (2017) Identification of differentially regulated maize proteins conditioning sugarcane mosaic virus systemic infection. New Phytol 215:1156–1172

    Article  CAS  PubMed  Google Scholar 

  56. Jacobs BL, Langland JO (1996) When two strands are better than one: The mediators and modulators of the cellular responses to double-stranded RNA. Virology 219:339–349

    Article  CAS  PubMed  Google Scholar 

  57. Nelson BK, Cai X, Nebenführ A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  58. Li F, Zhao N, Li Z, Xu X, Wang Y, Yang X et al (2017) A calmodulin-like protein suppresses RNA silencing and promotes geminivirus infection by degrading SGS3 via the autophagy pathway in Nicotiana benthamiana. PLoS Pathog 13:e1006213

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhang K, Zhang Y, Yang M, Liu S, Li Z, Wang X et al (2017) The barley stripe mosaic virus γ protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes. PLoS Pathog 13:e1006319

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wei T, Wang A (2008) Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J Virol 82:12252–12264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jonczyk M, Pathak KB, Sharma M, Nagy PD (2007) Exploiting alternative subcellular location for replication: tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes. Virology 362:320–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Professor Aiming Wang (Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Canada) for the dRBFC vectors, and Professor Andrew O. Jackson (University of California, Berkeley) for providing the pGD vectors.

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant 31871930), the Ministry of Agriculture and Rural Affairs of China (2018YFD020062, 2016ZX08010-001), and the Ministry of Education of China (the 111 Project B13006).

Author information

Authors and Affiliations

Authors

Contributions

JX and TZ designed the experiments. JX performed most of the experiments. JX, TJ, ZL, XL, ZF, and TZ analyzed the data. JX and TZ wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tao Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Massimo Turina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2999 kb)

Supplementary file2 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Jiang, T., Li, Z. et al. Sugarcane mosaic virus remodels multiple intracellular organelles to form genomic RNA replication sites. Arch Virol 166, 1921–1930 (2021). https://doi.org/10.1007/s00705-021-05077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05077-z

Navigation