Skip to main content
Log in

Characterization of vB_VpaP_MGD2, a newly isolated bacteriophage with biocontrol potential against multidrug-resistant Vibrio parahaemolyticus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Vibrio parahaemolyticus is a major foodborne pathogen and is also pathogenic to shrimp. Due to the emergence of multidrug-resistant V. parahaemolyticus strains, bacteriophages have shown promise as antimicrobial agents that could be used for controlling antibiotic-resistant strains. Here, a V. parahaemolyticus phage, vB_VpaP_MGD2, was isolated from a clam (Meretrix meretrix) and further characterized to evaluate its potential capability for biocontrol. Podophage vB_VpaP_MGD2 had a wide host range and was able to lyse 27 antibiotic-resistant V. parahaemolyticus strains. A one-step growth curve showed that vB_VpaP_MGD2 has a short latent period of 10 min and a large burst size of 244 phages per cell. Phage vB_VpaP_MGD2 was able to tolerate a wide range of temperature (30 °C-50 °C) and pH (pH 3-pH 10). Two multidrug-resistant strains (SH06 and SA411) were suppressed by treatment with phage vB_VpaP_MGD2 at a multiplicity of infection of 100 for 24 h without apparent regrowth of bacterial populations. The frequency of mutations causing bacteriophage resistance was relatively low (3.1 × 10-6). Phage vB_VpaP_MGD2 has a double-stranded DNA with a genome size of 45,105 bp. Among the 48 open reading frames annotated in the genome, no lysogenic genes or virulence genes were detected. Sequence comparisons suggested that vB_VpaP_MGD2 is a member of a new species in the genus Zindervirus within the subfamily Autographivirinae. This is the first report of a member of the genus Zindervirus that can infect V. parahaemolyticus. These findings suggest that vB_VpaP_MGD2 may be a candidate biocontrol agent against early mortality syndrome/acute hepatopancreatic necrosis disease (EMS/AHPND) caused by multidrug-resistant V. parahaemolyticus in shrimp production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Han N, Mizan MFR, Jahid IK, Ha SD (2016) Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature. Food Control 70:161–166. https://doi.org/10.1016/j.foodcont.2016.05.054

    Article  CAS  Google Scholar 

  2. Centers for Disease Control and Prevention (2019) Vibrio illness (Vibriosis): Vibrio parahaemolyticus. http://www.cdc.gov/vibrio/vibriop.html. Accessed 4 Aug 2019

  3. Han X, Zhang H, Cao M, Shen X (2015) Analysis on current pollution of Vibrio parahemolyticus in seafood in China and its controlling strategy. Food Ferment Ind 7:263–267. https://doi.org/10.13995/j.cnki.11-1802/ts.201507048

    Article  Google Scholar 

  4. Kongrueng J, Srinitiwarawong K, Nishibuchi M, Mittraparp-Arthorn P, Vuddhakul V (2018) Characterization and CRISPR-based genotyping of clinical trh-positive Vibrio parahaemolyticus. Gut Pathog 10:48. https://doi.org/10.1186/s13099-018-0275-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang Q, Dong X, Xie G, Fu S, Zou P, Sun J, Wang Y, Huang J (2019) Comparative genomic analysis unravels the transmission pattern and intra-species divergence of acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus strains. Mol Genet Genomics 294:1007–1022. https://doi.org/10.1007/s00438-019-01559-7

    Article  CAS  PubMed  Google Scholar 

  6. Shaw KS, Goldstein RER, He X, Jacobs JM, Crump BC, Sapkota AR (2014) Antimicrobial susceptibility of Vibrio vulnificus and Vibrio parahaemolyticus recovered from recreational and commercial areas of Chesapeake Bay and Maryland Coastal Bays. PLoS ONE 9:e89616. https://doi.org/10.1371/journal.pone.0089616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu X, Cheng J, Wu Q, Zhang J, Xie T (2016) Prevalence, characterization, and antibiotic susceptibility of Vibrio parahaemolyticus isolated from retail aquatic products in North China. BMC Microbiol 16:32. https://doi.org/10.1186/s12866-016-0650-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Obaidat MM, Salman AEB, Roess AA (2017) Virulence and antibiotic resistance of Vibrio parahaemolyticus isolates from seafood from three developing countries and of worldwide environmental, seafood, and clinical isolates from 2000 to 2017. J Food Prot 80:2060–2067. https://doi.org/10.4315/0362-028x.jfp-17-156

    Article  PubMed  Google Scholar 

  9. Lee Y, Choi Y, Lee S, Lee H, Kim S, Ha J, Lee J, Oh H, Kim Y, Yoon Y (2019) Occurrence of pathogenic Vibrio parahaemolyticus in seafood distribution channels and their antibiotic resistance profiles in S. Korea. Lett Appl Microbiol 68:128–133. https://doi.org/10.1111/lam.13099

    Article  CAS  PubMed  Google Scholar 

  10. Letchumanan V, Yin WF, Lee LH, Chan KG (2015) Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front Microbiol 6:33. https://doi.org/10.3389/fmicb.2015.00033

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gräslund S, Bengtsson BE (2001) Chemicals and biological products used in south-east Asian shrimp farming, and their potential impact on the environment—a review. Sci Total Environ 280:93–131. https://doi.org/10.1016/s0048-9697(01)00818-x

    Article  PubMed  Google Scholar 

  12. Adams A (2019) Progress, challenges and opportunities in fish vaccine development. Fish Shellfish Immunol 90:210–214. https://doi.org/10.1016/j.fsi.2019.04.066

    Article  CAS  PubMed  Google Scholar 

  13. Wittebole X, De Roock S, Opal SM (2014) A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5:226–235. https://doi.org/10.4161/viru.25991

    Article  PubMed  Google Scholar 

  14. Rao BM, Lalitha KV (2015) Bacteriophage for aquaculture: are they beneficial or inimical. Aquaculture 437:146–154. https://doi.org/10.1016/j.aquaculture.2014.11.039

    Article  Google Scholar 

  15. Kazi M, Annapure US (2016) Bacteriophage biocontrol of foodborne pathogens. J Food Sci Technol 53:1355–1362. https://doi.org/10.1007/s13197-015-1996-8

    Article  PubMed  Google Scholar 

  16. Martinez-Diaz SF, Hipolito-Morales A (2013) Efficacy of phage therapy to prevent mortality during the vibriosis of brine shrimp. Aquaculture 400–401:120–124. https://doi.org/10.1016/j.aquaculture.2013.03.007

    Article  Google Scholar 

  17. Wang YH, Barton M, Elliott L, Li XX, Abraham S, O’Dea M, Munro J (2017) Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture 473:251–258. https://doi.org/10.1016/j.aquaculture.2017.01.003

    Article  CAS  Google Scholar 

  18. Khairnar K, Raut MP, Chandekar RH, Sanmukh SG, Paunikar WN (2013) Novel bacteriophage therapy for controlling metallo-beta-lactamase producing Pseudomonas aeruginosa infection in catfish. BMC Vet Res 9:264. https://doi.org/10.1186/1746-6148-9-264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nikapitiya C, Chandrarathna HPSU, Dananjaya SHS, De Zoysa M, Lee J (2020) Isolation and characterization of phage (ETP-1) specific to multidrug resistant pathogenic Edwardsiella tarda and its in vivo biocontrol efficacy in zebrafish (Danio rerio). Biologicals 63:14–23. https://doi.org/10.1016/j.biologicals.2019.12.006

    Article  PubMed  Google Scholar 

  20. Le TS, Nguyen TH, Vo HP, Doan VC, Nguyen HL, Tran MT, Tran TT, Southgate PC, Kurtböke Dİ (2018) Protective effects of bacteriophages against Aeromonas hydrophila species causing motile Aeromonas Septicemia (MAS) in striped catfish. Antibiotics (Basel) 7:16. https://doi.org/10.3390/antibiotics7010016

    Article  CAS  Google Scholar 

  21. Matsuoka S, Hashizume T, Kanzaki H, Iwamoto E, Park SC, Yoshida T, Nakai T (2007) Phage therapy against beta-hemolytic streptococcicosis of Japanese flounder Paralichthys olivaceus. Fish Pathol 42:181–189. https://doi.org/10.3147/jsfp.42.181

    Article  Google Scholar 

  22. García-Anaya MC, Sepulveda DR, Sáenz-Mendoza AI, Rios-Velasco C, Zamudio-Flores PB, Acosta-Muñiz CH (2020) Phages as biocontrol agents in dairy products. Trends Food Sci Tech 95:10–20. https://doi.org/10.1016/j.tifs.2019.10.006

    Article  CAS  Google Scholar 

  23. Lomelí-Ortega CO, Martínez-Díaz SF (2014) Phage therapy against Vibrio parahaemolyticus infection in the whiteleg shrimp (Litopenaeus vannamei) larvae. Aquaculture 434:208–211. https://doi.org/10.1016/j.aquaculture.2014.08.018

    Article  Google Scholar 

  24. Rong R, Lin H, Wang J, Khan MN, Li M (2014) Reductions of Vibrio parahaemolyticus in oysters after bacteriophage application during depuration. Aquaculture 418:171–176. https://doi.org/10.1016/j.aquaculture.2013.09.028

    Article  Google Scholar 

  25. Zhang H, Yang Z, Zhou Y, Bao H, Wang R, Li T, Pang M, Sun L, Zhou X (2018) Application of a phage in decontaminating Vibrio parahaemolyticus in oysters. Int J Food Microbiol 275:24–31. https://doi.org/10.1016/j.ijfoodmicro.2018.03.027

    Article  PubMed  Google Scholar 

  26. Yin Y, Ni P, Liu D, Yang S, Almeida A, Guo Q, Zhang Z, Deng L, Wang D (2019) Bacteriophage potential against Vibrio parahaemolyticus biofilms. Food Control 98:156–163. https://doi.org/10.1016/j.foodcont.2018.11.034

    Article  CAS  Google Scholar 

  27. Jun JW, Shin TH, Kim JH, Shin SP, Han JE, Heo GJ, De Zoysa M, Shin GW, Chai JY, Park SC (2014) Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. J Infect Dis 210:72–78. https://doi.org/10.1093/infdis/jiu059

    Article  CAS  PubMed  Google Scholar 

  28. Lee LH, Ab Mutalib NS, Law JW, Wong SH, Letchumanan V (2018) Discovery on antibiotic resistance patterns of Vibrio parahaemolyticus in Selangor reveals carbapenemase producing Vibrio parahaemolyticus in marine and freshwater fish. Front Microbiol 9:2513. https://doi.org/10.3389/fmicb.2018.02513

    Article  PubMed  PubMed Central  Google Scholar 

  29. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  30. Topka G, Bloch S, Nejman-Faleńczyk B, Gąsior T, Jurczak-Kurek A, Necel A, Dydecka A, Richert M, Węgrzyn G, Węgrzyn A (2019) Characterization of bacteriophage vB-EcoS-95, isolated from urban sewage and revealing extremely rapid lytic development. Front Microbiol 9:3326. https://doi.org/10.3389/fmicb.2018.03326

    Article  PubMed  PubMed Central  Google Scholar 

  31. Endersena L, Buttimera C, Nevina E, Coffeya A, Neveb H, Oliveira H, Lavigne R, O’Mahony J (2017) Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula. Int J Food Microbiol 275:24–31. https://doi.org/10.1016/j.ijfoodmicro.2017.04.009

    Article  CAS  Google Scholar 

  32. Chen L, Yuan S, Liu Q, Mai G, Yang J, Deng D, Zhang B, Liu C, Ma Y (2018) In vitro design and evaluation of phage cocktails against Aeromonas salmonicida. Front Microbiol 9:1476. https://doi.org/10.3389/fmicb.2018.01476

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sasikala D, Srinivasan P (2016) Characterization of potential lytic bacteriophage against Vibrio alginolyticus and its therapeutic implications on biofilm dispersal. Microb Pathogenesis 101:24–35. https://doi.org/10.1016/j.micpath.2016.10.017

    Article  CAS  Google Scholar 

  34. Ciacci N, D’Andrea MM, Marmo P, Demattè E, Amisano F, Di Pilato V, Fraziano M, Lupetti P, Rossolini GM, Thaller MC (2018) Characterization of vB_Kpn_F48, a newly discovered lytic bacteriophage for Klebsiella pneumoniae of sequence type 101. Viruses 10:482. https://doi.org/10.3390/v10090482

    Article  CAS  PubMed Central  Google Scholar 

  35. Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, Kot W, Hansen LH, Enright MC, Jenkins AT (2014) Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microb 80:6694–6703. https://doi.org/10.1128/AEM.01789-14

    Article  CAS  Google Scholar 

  36. Taha OA, Connerton PL, Connerton IF, El-Shibiny A (2018) Bacteriophage ZCKP1: a potential treatment for Klebsiella pneumoniae isolated from diabetic foot patients. Front Microbiol 9:2127. https://doi.org/10.3389/fmicb.2018.02127

    Article  PubMed  PubMed Central  Google Scholar 

  37. Coil D, Jospin G, Darling AE (2015) A5-MiSeq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587–589. https://doi.org/10.1093/bioinformatics/btu661

    Article  CAS  PubMed  Google Scholar 

  38. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garneau JR, Depardieu F, Fortier LC, Bikard D, Monot M (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 7:8292. https://doi.org/10.1038/s41598-017-07910-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689. https://doi.org/10.1093/nar/gki366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. https://doi.org/10.1093/jac/dks261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen L, Zheng D, Liu B, Yang J, Jin Q (2016) VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res 44:D694–D697. https://doi.org/10.1093/nar/gkv1239

    Article  CAS  PubMed  Google Scholar 

  43. Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21:537–539. https://doi.org/10.1093/bioinformatics/bti054

    Article  CAS  PubMed  Google Scholar 

  44. Ferri M, Ranucci E, Romagnoli P, Giaccone V (2017) Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr 57:2857–2876. https://doi.org/10.1080/10408398.2015.1077192

    Article  CAS  PubMed  Google Scholar 

  45. Letchumanan V, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Goh BH, Ab Mutalib NS, Lee LH (2016) Insights into bacteriophage application in controlling Vibrio species. Front Microbiol 7:1114. https://doi.org/10.3389/fmicb.2016.01114

    Article  PubMed  PubMed Central  Google Scholar 

  46. Barros J, Melo LDR, Poeta P, Igrejas G, Ferraz MP, Azeredo J, Monteiro FJ (2019) Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. Int J Antimicrob Agents 54:329–337. https://doi.org/10.1016/j.ijantimicag.2019.06.007

    Article  CAS  PubMed  Google Scholar 

  47. Łubowska N, Grygorcewicz B, Kosznik-Kwaśnicka K, Zauszkiewicz-Pawlak A, Węgrzyn A, Dołęgowska B, Piechowicz L (2019) Characterization of the three new kayviruses and their lytic activity against multidrug-resistant Staphylococcus aureus. Microorganisms 7:471. https://doi.org/10.3390/microorganisms7100471

    Article  CAS  PubMed Central  Google Scholar 

  48. Gupta R, Prasad Y (2011) Efficacy of polyvalent bacteriophage P-27/HP to control multidrug resistant Staphylococcus aureus associated with human infections. Curr Microbiol 62:255. https://doi.org/10.1007/s00284-010-9699-x

    Article  CAS  PubMed  Google Scholar 

  49. Amarillas L, Rubí-Rangel L, Chaidez C, González-Robles A, Lightbourn-Rojas L, León-Félix J (2017) Isolation and characterization of phiLLS, a novel phage with potential biocontrol agent against multidrug-resistant Escherichia coli. Front Microbiol 8:1355. https://doi.org/10.3389/fmicb.2017.01355

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lal TM, Sano M, Ransangan J (2017) Isolation and characterization of large marine bacteriophage (Myoviridae), VhKM4 infecting Vibrio harveyi. J Aquat Anim Health 29:26–30. https://doi.org/10.1080/08997659

    Article  CAS  PubMed  Google Scholar 

  51. Wong HC, Wang TY, Yang CW, Tang CT, Ying CW, Wang CH, Chang WH (2019) Characterization of a lytic vibriophage VP06 of Vibrio parahaemolyticus. Res Microbiol 170:13–23. https://doi.org/10.1016/j.resmic.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  52. Lal TM, Sano M, Ransangan J (2016) Genome characterization of a novel vibriophage VpKK5 (Siphoviridae) specific to fish pathogenic strain of Vibrio parahaemolyticus. J Basic Microbiol 56:872–888. https://doi.org/10.1002/jobm.201500611

    Article  CAS  PubMed  Google Scholar 

  53. Stalin N, Srinivasan P (2016) Characterization of Vibrio parahaemolyticus and its specific phage from shrimp pond in Palk Strait, South East coast of India. Biologicals 44:526–533. https://doi.org/10.1016/j.biologics.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  54. Adriaenssens E, Brister JR (2017) How to name and classify your phage: an informal guide. Viruses 9:70. https://doi.org/10.3390/v9040070

    Article  PubMed Central  Google Scholar 

  55. Zhao F, Sun H, Zhou X, Liu G, Li M, Wang C, Liu S, Zhuang Y, Tong Y, Ren H (2019) Characterization and genome analysis of a novel bacteriophage vB_SpuP_Spp16 that infects Salmonella enterica serovar pullorum. Virus Genes 55:532–540. https://doi.org/10.1007/s11262-019-01664-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Shanghai Agriculture Applied Technology Development Program, China (grant no. 2019-02-08-00-10-F01149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Sun.

Ethics declarations

Conflict of interest

Yanzi Cao declares that she has no conflict of interest. Yujie Zhang declares that she has no conflict of interest. Weiqing Lan declares that he has no conflict of interest. Xiaohong Sun declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 87 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Zhang, Y., Lan, W. et al. Characterization of vB_VpaP_MGD2, a newly isolated bacteriophage with biocontrol potential against multidrug-resistant Vibrio parahaemolyticus. Arch Virol 166, 413–426 (2021). https://doi.org/10.1007/s00705-020-04887-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04887-x

Navigation