Skip to main content

Advertisement

Log in

Human respiratory syncytial virus F protein expressed in Pichia pastoris or Escherichia coli induces protective immunity without inducing enhanced respiratory disease in mice

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human respiratory syncytial virus (hRSV) is the primary cause of severe respiratory tract disease in children and infants as well as in elderly and immunocompromised adults. The fusion protein (F) of hRSV is the major antigen eliciting a neutralizing antibody response and protective immunity in the host, especially those recognizing the prefusion F protein (pre-F). In this study, we made genetic constructs for expression of a recombinant prefusion F protein in Pichia pastoris GS115, called RGF. Using Escherichia coli BL21, we expressed the pre-F and postfusion F protein (Post-F), called RBF and Post-RBF, respectively. RGF and RBF showed high affinity for 5C4, a highly potent monoclonal antibody specific for pre-F. We studied the immunogenicity of RGF and RBF in mice. Compared to mice immunized with formalin-inactivated RSV (FI-RSV), mice immunized with RGF or RBF exhibited superior protective immunity, which was confirmed by serum neutralizing activity and viral clearance after challenge. As judged from the IgG1/IgG2a ratios and numbers of IFN-γ- and IL-4-secreting cells, RGF or RBF with alum adjuvant induced a balanced Th1-biased immune response and produced no signs of enhanced respiratory disease (ERD) upon hRSV challenge. In addition, the immunogenicity and protective efficacy of RGF were superior to those of RBF in mice. Therefore, RGF represents a potential vaccine candidate for the prevention of human infection with hRSV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data included in this study are available upon request from the corresponding author.

References

  1. Amarasinghe GK, Ceballos NG, Banyard AC, Basler CF, Bavari S, Bennett AJ et al (2018) Taxonomy of the order Mononegavirales: update 2018. Arch Virol 163(8):2283–2294. https://doi.org/10.1007/s00705-018-3814-x

    Article  CAS  Google Scholar 

  2. Chanock R, Finberg L (1957) Recovery from infants with respiratory illness of a virus related to chimpanzee coryza agent (CCA). II. Epidemiologic aspects of infection in infants and young children. Am J Hyg 66(3):291–300

    CAS  Google Scholar 

  3. Karron RA, Black RE (2017) Determining the burden of respiratory syncytial virus disease: the known and the unknown. Lancet 390(10098):917–918. https://doi.org/10.1016/S0140-6736(17)31476-9

    Article  Google Scholar 

  4. Schickli JH, Whitacre DC, Tang RS, Kaur J, Lawlor H, Peters CJ et al (2015) Palivizumab epitope-displaying virus-like particles protect rodents from RSV challenge. J Clin Invest 125(4):1637–1647. https://doi.org/10.1172/JCI78450

    Article  Google Scholar 

  5. Roberts JN, Graham BS, Karron RA, Munoz FM, Falsey AR, Anderson LJ et al (2016) Challenges and opportunities in RSV vaccine development: meeting report from FDA/NIH workshop. Vaccine 34(41):4843–4849. https://doi.org/10.1016/j.vaccine.2016.07.057

    Article  Google Scholar 

  6. Langley JM, Aggarwal N, Toma A, Halperin SA, Shelly M et al (2016) A randomized, controlled, observer-blind phase I study of the safety and immunogenicity of a respiratory syncytial virus vaccine with or without alum adjuvant. J Infect Dis 215:453

    Google Scholar 

  7. Rezaee F, Linfield DT, Harford TJ, Piedimonte G (2017) Ongoing developments in RSV prophylaxis: a clinician’s analysis. Curr Opin Virol 24:70–78. https://doi.org/10.1016/j.coviro.2017.03.015

    Article  CAS  Google Scholar 

  8. Esposito S, Pietro GD (2016) Respiratory syncytial virus vaccines: an update on those in the immediate pipeline. Future Microbiol 11(11):1479–1490. https://doi.org/10.2217/fmb-2016-0106

    Article  CAS  Google Scholar 

  9. Beran J, Lickliter JD, Schwarz TF, Johnson C, Chu L, Domachowske JB et al (2018) Safety and immunogenicity of 3 formulations of an investigational respiratory syncytial virus vaccine in non-pregnant women: results from two phase II trials. J Infect Dis 217(10):1616

    Article  CAS  Google Scholar 

  10. Crank MC, Ruckwardt TJ, Chen M, Morabito KM, Phung E, Costner PJ et al (2019) A proof of concept for structure-based vaccine design targeting RSV in humans. Science 365(6452):505–509. https://doi.org/10.1126/science.aav9033

    Article  CAS  Google Scholar 

  11. Lambert SL, Aslam S, Stillman E, MacPhail M, Nelson C, Ro B et al (2015) A novel respiratory syncytial virus (RSV) F subunit vaccine adjuvanted with GLA-SE elicits robust protective TH1-type humoral and cellular immunity in rodent models. PLoS One 10(3):e0119509. https://doi.org/10.1371/journal.pone.0119509

    Article  CAS  Google Scholar 

  12. Krarup A, Truan D, Furmanova-Hollenstein P, Bogaert L, Bouchier P, Bisschop IJ et al (2015) A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat Commun 6:8143. https://doi.org/10.1038/ncomms9143

    Article  Google Scholar 

  13. Zhang Y, Qiao L, Hu X, Zhao K, Zhang Y, Chai F et al (2016) Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection. Vaccine 34(2):252–260. https://doi.org/10.1016/j.vaccine.2015.11.027

    Article  Google Scholar 

  14. Chen X, Xu B, Guo J, Li C, An S, Zhou Y et al (2018) Genetic variations in the fusion protein of respiratory syncytial virus isolated from children hospitalized with community-acquired pneumonia in China. Sci Rep 8(1):4491. https://doi.org/10.1038/s41598-018-22826-4

    Article  CAS  Google Scholar 

  15. Gilman MS, Moin SM, Mas V, Chen M, Patel NK, Kramer K et al (2015) Characterization of a prefusion-specific antibody that recognizes a quaternary, cleavage-dependent epitope on the RSV fusion glycoprotein. PLoS Pathog 11(7):e1005035. https://doi.org/10.1371/journal.ppat.1005035

    Article  CAS  Google Scholar 

  16. Bermingham IM, Chappell KJ, Watterson D, Young PR (2017) The heptad repeat C domain of the respiratory syncytial virus fusion protein plays a key role in membrane fusion. J Virol. https://doi.org/10.1128/JVI.01323-17

    Article  Google Scholar 

  17. McLellan JS, Chen M, Joyce MG, Sastry M, Stewart-Jones GB, Yang Y et al (2013) Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342(6158):592–598. https://doi.org/10.1126/science.1243283

    Article  CAS  Google Scholar 

  18. McLellan JS, Ray WC, Peeples ME (2013) Structure and function of respiratory syncytial virus surface glycoproteins. Curr Top Microbiol Immunol 372:83–104. https://doi.org/10.1007/978-3-642-38919-1_4

    Article  CAS  Google Scholar 

  19. Liljeroos L, Krzyzaniak MA, Helenius A, Butcher SJ (2013) Architecture of respiratory syncytial virus revealed by electron cryotomography. Proc Natl Acad Sci USA 110(27):11133–11138. https://doi.org/10.1073/pnas.1309070110

    Article  Google Scholar 

  20. Crunkhorn S (2014) Viral diseases: zeroing in on RSV vaccine design. Nat Rev Drug Discov 13(1):17. https://doi.org/10.1038/nrd4207

    Article  CAS  Google Scholar 

  21. Joyce MG, Zhang B, Ou L, Chen M, Chuang GY, Druz A et al (2016) Iterative structure-based improvement of a fusion-glycoprotein vaccine against RSV. Nat Struct Mol Biol 23(9):811–820. https://doi.org/10.1038/nsmb.3267

    Article  CAS  Google Scholar 

  22. McLellan JS, Chen M, Leung S, Graepel KW, Du X, Yang Y et al (2013) Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 340(6136):1113–1117. https://doi.org/10.1126/science.1234914

    Article  CAS  Google Scholar 

  23. Zhang Y, Zhou Z, Zhu SL, Zu X, Wang Z, Zhang LK et al (2019) A novel RSV F-Fc fusion protein vaccine reduces lung injury induced by respiratory syncytial virus infection. Antiviral Res 165:11–22. https://doi.org/10.1016/j.antiviral.2019.02.017

    Article  CAS  Google Scholar 

  24. Salisch NC, Izquierdo Gil A, Czapska-Casey DN, Vorthoren L, Serroyen J, Tolboom J et al (2019) Adenovectors encoding RSV-F protein induce durable and mucosal immunity in macaques after two intramuscular administrations. NPJ Vaccines 4:54. https://doi.org/10.1038/s41541-019-0150-4

    Article  CAS  Google Scholar 

  25. Kim HW, Canchola JG, Brandt CD, Pyles G, Chanock RM, Jensen K et al (1969) Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 89(4):422–434

    Article  CAS  Google Scholar 

  26. Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Batalle JP et al (2009) Lack of antibody affinity maturation due to poor toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med 15(1):34–41. https://doi.org/10.1038/nm.1894

    Article  CAS  Google Scholar 

  27. Ma Y, Jiao Y-Y, Yu Y-Z, Jiang N, Hua Y, Zhang X-J et al (2018) A built-in CpG adjuvant in RSV F protein DNA vaccine drives a Th1 polarized and enhanced protective immune response. Viruses 10(1):38. https://doi.org/10.3390/v10010038

    Article  CAS  Google Scholar 

  28. Glenn GM, Smith G, Fries L, Raghunandan R, Lu H, Zhou B et al (2013) Safety and immunogenicity of a Sf9 insect cell-derived respiratory syncytial virus fusion protein nanoparticle vaccine. Vaccine 31(3):524–532. https://doi.org/10.1016/j.vaccine.2012.11.009

    Article  CAS  Google Scholar 

  29. Blais N, Gagne M, Hamuro Y, Rheault P, Boyer M, Steff AM et al (2017) Characterization of pre-F-GCN4t, a modified human respiratory syncytial virus fusion protein stabilized in a noncleaved prefusion conformation. J Virol. https://doi.org/10.1128/JVI.02437-16

    Article  Google Scholar 

  30. Singh SR, Dennis VA, Carter CL, Pillai SR, Jefferson A, Sahi SV et al (2007) Immunogenicity and efficacy of recombinant RSV-F vaccine in a mouse model. Vaccine 25(33):6211–6223. https://doi.org/10.1016/j.vaccine.2007.05.068

    Article  CAS  Google Scholar 

  31. Subbarayan P, Qin H, Pillai S, Lee JJ, Pfendt AP, Willing G et al (2010) Expression and characterization of a multivalent human respiratory syncytial virus protein. Mol Biol 44(3):420–430. https://doi.org/10.1134/s0026893310030106

    Article  CAS  Google Scholar 

  32. Arcuri HA, Apponi LH, Valentini SR, Durigon EL, de Azevedo WF, Fossey MA et al (2008) Expression and purification of human respiratory syncytial virus recombinant fusion protein. Protein Expr Purif 62(2):146–152. https://doi.org/10.1016/j.pep.2008.08.005

    Article  CAS  Google Scholar 

  33. Brunel L, Neugnot V, Landucci L, Boze H, Moulin G, Bigey F et al (2004) High-level expression of Candida parapsilosis lipase/acyltransferase in Pichia pastoris. J Biotechnol 111(1):41–50. https://doi.org/10.1016/j.jbiotec.2004.03.007

    Article  CAS  Google Scholar 

  34. Farnos O, Fernandez E, Chiong M, Parra F, Joglar M, Mendez L et al (2009) Biochemical and structural characterization of RHDV capsid protein variants produced in Pichia pastoris: advantages for immunization strategies and vaccine implementation. Antiviral Res 81(1):25–36. https://doi.org/10.1016/j.antiviral.2008.08.007

    Article  CAS  Google Scholar 

  35. Jing XL, Luo XG, Tian WJ, Lv LH, Jiang Y, Wang N et al (2010) High-level expression of the antimicrobial peptide plectasin in Escherichia coli. Curr Microbiol 61(3):197–202. https://doi.org/10.1007/s00284-010-9596-3

    Article  CAS  Google Scholar 

  36. Garg R, Latimer L, Wang Y, Simko E, Gerdts V, Potter A et al (2016) Maternal immunization with respiratory syncytial virus fusion protein formulated with a novel combination adjuvant provides protection from RSV in newborn lambs. Vaccine 34(2):261–269. https://doi.org/10.1016/j.vaccine.2015.11.029

    Article  CAS  Google Scholar 

  37. Mapletoft JW, Oumouna M, Kovacs-Nolan J, Latimer L, Mutwiri G, Babiuk LA et al (2008) Intranasal immunization of mice with a formalin-inactivated bovine respiratory syncytial virus vaccine co-formulated with CpG oligodeoxynucleotides and polyphosphazenes results in enhanced protection. J Gen Virol. 89(Pt 1):250–260. https://doi.org/10.1099/vir.0.83300-0

    Article  CAS  Google Scholar 

  38. Lee Y, Ko EJ, Kim KH, Lee YT, Hwang HS, Jung YJ et al (2019) The efficacy of inactivated split respiratory syncytial virus as a vaccine candidate and the effects of novel combination adjuvants. Antiviral Res 168:100–108. https://doi.org/10.1016/j.antiviral.2019.05.011

    Article  CAS  Google Scholar 

  39. Xu W, Zhao Q, Xing L, Lin Z (2016) Recombinant production of influenza hemagglutinin and HIV-1 GP120 antigenic peptides using a cleavable self-aggregating tag. Sci Rep 6:35430. https://doi.org/10.1038/srep35430

    Article  CAS  Google Scholar 

  40. Zhao M, Zheng ZZ, Chen M, Modjarrad K, Zhang W, Zhan LT et al (2017) Discovery of a prefusion respiratory syncytial virus F-specific monoclonal antibody that provides greater in Vivo protection than the murine precursor of palivizumab. J Virol 91(15):e00176-00117. https://doi.org/10.1128/jvi.00176-17

    Article  CAS  Google Scholar 

  41. McLellan JS (2015) Neutralizing epitopes on the respiratory syncytial virus fusion glycoprotein. Curr Opin Virol 11:70–75. https://doi.org/10.1016/j.coviro.2015.03.002

    Article  CAS  Google Scholar 

  42. Knudson CJ, Hartwig SM, Meyerholz DK, Varga SM (2015) RSV vaccine-enhanced disease is orchestrated by the combined actions of distinct CD4 T cell subsets. PLoS Pathog 11(3):e1004757. https://doi.org/10.1371/journal.ppat.1004757

    Article  CAS  Google Scholar 

  43. Connors M, Giese NA, Kulkarni AB, Firestone CY, Morse HC, Murphy BR (1994) Enhanced pulmonary histopathology induced by respiratory syncytial virus (RSV) challenge of formalin-inactivated RSV-immunized BALB/c mice is abrogated by depletion of interleukin-4 (IL-4) and IL-10. J Virol 68(8):5321–5325

    Article  CAS  Google Scholar 

  44. Marasini N, Kaminskas LM (2019) Subunit-based mucosal vaccine delivery systems for pulmonary delivery - Are they feasible? Drug Dev Ind Pharm 45(6):882–894. https://doi.org/10.1080/03639045.2019.1583758

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Ningshao Xia for generously supplying the 5C4 antibody.

Funding

This work was supported by the Key Technologies R&D Program of the National Ministry of Science (2018ZX10713002 and 2018ZX10713001-003).

Author information

Authors and Affiliations

Authors

Contributions

HL, YZ and WBX designed the study and prepared the manuscript. HL, LC and PBZ expressed and purified the protein. HL and HR performed the animal experiments and analyzed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenbo Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Tim Skern.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cao, L., Zhang, Y. et al. Human respiratory syncytial virus F protein expressed in Pichia pastoris or Escherichia coli induces protective immunity without inducing enhanced respiratory disease in mice. Arch Virol 165, 1057–1067 (2020). https://doi.org/10.1007/s00705-020-04578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04578-7

Navigation