Skip to main content

Advertisement

Log in

An In Silico Multi-epitopes Vaccine Ensemble and Characterization Against Nosocomial Proteus penneri

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Proteus penneri (P. penneri) is a bacillus-shaped, gram-negative, facultative anaerobe bacterium that is primarily an invasive pathogen and the etiological agent of several hospital-associated infections. P. penneri strains are naturally resistant to macrolides, amoxicillin, oxacillin, penicillin G, and cephalosporins; in addition, no vaccines are available against these strains. This warrants efforts to propose a theoretical based multi-epitope vaccine construct to prevent pathogen infections. In this research, reverse vaccinology bioinformatics and immunoinformatics approaches were adopted for vaccine target identification and construction of a multi-epitope vaccine. In the first phase, a core proteome dataset of the targeted pathogen was obtained using the NCBI database and subjected to bacterial pan-genome analysis using bacterial pan-genome analysis (BPGA) to predict core protein sequences which were then used to find good vaccine target candidates. This identified two proteins, Hcp family type VI secretion system effector and superoxide dismutase family protein, as promising vaccine targets. Afterward using the IEDB database, different B-cell and T-cell epitopes were predicted. A set of four epitopes “KGSVNVQDRE, NTGKLTGTR, IIHSDSWNER, and KDGKPVPALK” were chosen for the development of a multi-epitope vaccine construct. A 183 amino acid long vaccine design was built along with “EAAAK” and “GPGPG” linkers and a cholera toxin B-subunit adjuvant. The designed vaccine model comprised immunodominant, non-toxic, non-allergenic, and physicochemical stable epitopes. The model vaccine was docked with MHC-I, MHC-II, and TLR-4 immune cell receptors using the Cluspro2.0 web server. The binding energy score of the vaccine was − 654.7 kcal/mol for MHC-I, − 738.4 kcal/mol for MHC-II, and − 695.0 kcal/mol for TLR-4. A molecular dynamic simulation was done using AMBER v20 package for dynamic behavior in nanoseconds. Additionally, MM-PBSA binding free energy analysis was done to test intermolecular binding interactions between docked molecules. The MM-GBSA net binding energy score was − 148.00 kcal/mol, − 118.00 kcal/mol, and − 127.00 kcal/mol for vaccine with TLR-4, MHC-I, and MHC-II, respectively. Overall, these in silico-based predictions indicated that the vaccine is highly promising in terms of developing protective immunity against P. penneri. However, additional experimental validation is required to unveil the real immune response to the designed vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All the data generated in the work is presented in the manuscript.

References

  1. Mancuso, G., Midiri, A., Gerace, E., & Biondo, C. (2021). Bacterial antibiotic resistance: The most critical pathogens. Pathogens, 10(10), 1310.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Si, Z., Pethe, K., & Chan-Park, M. B. (2023). Chemical basis of combination therapy to combat antibiotic resistance. JACS Au, 3(2), 276–292.

    Article  CAS  PubMed Central  Google Scholar 

  3. Li, R.-J., Wu, Y.-L., Huang, K., Hu, X.-Q., Zhang, J.-J., Yang, L.-Q., & Yang, X.-Y. (2023). A prospective surveillance study of healthcare-associated infections in an intensive care unit from a tertiary care teaching hospital from 2012–2019. Medicine, 102(31), e34469.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Cruz-Lopez, F., Villarreal-Trevino, L., Camacho-Ortiz, A., Morfin-Otero, R., Flores-Trevino, S., & Garza-Gonzalez, E. (2020). Acquired genetic elements that contribute to antimicrobial resistance in frequent Gram-negative causative agents of healthcare-associated infections. The American Journal of the Medical Sciences, 360(6), 631–640.

    Article  PubMed  Google Scholar 

  5. Banin, E., Hughes, D., & Kuipers, O. P. (2017). Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiology Reviews, 41(3), 450–452.

    Article  CAS  PubMed  Google Scholar 

  6. Ventola, C. L. (2015). The antibiotic resistance crisis: Part 1: Causes and threats. Pharmacy and Therapeutics, 40(4), 277.

    PubMed Central  PubMed  Google Scholar 

  7. Davin-Regli, A., & Pagès, J.-M. (2015). Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in Microbiology, 6, 392.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Drzewiecka, D. (2016). Significance and roles of Proteus spp. bacteria in natural environments. Microbial Ecology, 72, 741–758.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Girlich, D., Bonnin, R. A., Dortet, L., & Naas, T. (2020). Genetics of acquired antibiotic resistance genes in Proteus spp. Frontiers in Microbiology, 11, 256.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Hall, E., Wodi, A. P., Hamborsky, J., Morelli, V., & Schillie, S. (2021). Epidemiology and prevention of vaccine-preventable diseases. US Department of Health and Human Services, Centers for Disease Control and Prevention.

    Google Scholar 

  11. Plotkin, S., Robinson, J. M., Cunningham, G., Iqbal, R., & Larsen, S. (2017). The complexity and cost of vaccine manufacturing—An overview. Vaccine, 35(33), 4064–4071.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Cid, R., & Bolívar, J. (2021). Platforms for production of protein-based vaccines: From classical to next-generation strategies. Biomolecules, 11(8), 1072.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Parvizpour, S., Pourseif, M. M., Razmara, J., Rafi, M. A., & Omidi, Y. (2020). Epitope-based vaccine design: A comprehensive overview of bioinformatics approaches. Drug Discovery Today, 25(6), 1034–1042.

    Article  CAS  PubMed  Google Scholar 

  14. Pizza, M., Grandi, G., Telford, J. L., & Rappuoli, R. (2002). Reverse vaccinology: A genome-based approach to vaccine development. Chimica Oggi, 20(7–8), 32–36.

    CAS  Google Scholar 

  15. Adu-Bobie, J., Capecchi, B., Serruto, D., Rappuoli, R., & Pizza, M. (2003). Two years into reverse vaccinology. Vaccine, 21(7–8), 605–610.

    Article  PubMed  Google Scholar 

  16. Buynak, E. B., Roehm, R. R., & Tytell, A. A. (1996). Vaccine against human hepatitis B. Journal of the American Medical Association, 276(22), 1793–1795. https://doi.org/10.1001/jama.276.22.1793

    Article  CAS  PubMed  Google Scholar 

  17. Malik, M., Khan, S., Ullah, A., Hassan, M., Ahmad, S., Al-Harbi, A. I., … Khurram, M. (2023). Proteome-wide screening of potential vaccine targets against Brucella melitensis. Vaccines, 11(2), 263.

  18. Yousaf, M., Ullah, A., Sarosh, N., Abbasi, S. W., Ismail, S., Bibi, S., … Abdulhakim, J. A. (2022). Design of multi-epitope vaccine for Staphylococcus saprophyticus: Pan-genome and reverse vaccinology approach. Vaccines, 10(8), 1192.

  19. Zhang, L. (2018). Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cellular and Molecular Immunology, 15(2), 182–184.

    Article  CAS  PubMed  Google Scholar 

  20. Maione, D., Margarit, I., Rinaudo, C. D., Masignani, V., Mora, M., Scarselli, M., … Rosini, R. (2005). Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science, 309(5731), 148–150.

  21. Pal, N., Hooja, S., Sharma, R., & Maheshwari, R. K. (2016). Phenotypic detection and antibiogram of β-lactamase-producing Proteus species in a tertiary care Hospital, India. Annals of Medical and Health Sciences Research, 6(5), 267–279.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ullah, A., Ahmad, S., Ismail, S., Afsheen, Z., Khurram, M., Tahir ul Qamar, M., … Allemailem, K. S. (2021). Towards a novel multi-epitopes chimeric vaccine for simulating strong immune responses and protection against Morganella morganii. International Journal of Environmental Research and Public Health, 18(20), 10961.

  23. Rida, T., Ahmad, S., Ullah, A., Ismail, S., Tahir ul Qamar, M., Afsheen, Z., … Alatawi, E. A. (2022). Pan-genome analysis of oral bacterial pathogens to predict a potential novel multi-epitopes vaccine candidate. International Journal of Environmental Research and Public Health, 19(14), 8408.

  24. Gul, S., Ahmad, S., Ullah, A., Ismail, S., Khurram, M., Tahir ul Qamar, M., … Allemailem, K. S. (2022). Designing a recombinant vaccine against Providencia rettgeri using immunoinformatics approach. Vaccines, 10(2), 189.

  25. Ullah, A., Ullah Khan, S., Haq, M. U., Ahmad, S., Irfan, M., Asif, M., … Alrumaihi, F. (2022). Computational study to investigate Proteus mirabilis proteomes for multi-epitope vaccine construct design. Journal of Biomolecular Structure and Dynamics, 1–12.

  26. Ud-Din, M., Albutti, A., Ullah, A., Ismail, S., Ahmad, S., Naz, A., … Bakri, Y. El. (2022). Vaccinomics to design a multi-epitopes vaccine for Acinetobacter baumannii. International Journal of Environmental Research and Public Health, 19(9), 5568.

  27. Mushtaq, M., Khan, S., Hassan, M., Al-Harbi, A. I., Hameed, A. R., Khan, K., … Ahmad, S. (2022). Computational design of a chimeric vaccine against Plesiomonas shigelloides using pan-genome and reverse vaccinology. Vaccines, 10(11), 1886.

  28. Alharbi, M., Alshammari, A., Alasmari, A. F., Alharbi, S. M., Tahir ul Qamar, M., Ullah, A., … Khalil, A. A. K. (2022). Designing of a recombinant multi-epitopes based vaccine against Enterococcus mundtii using bioinformatics and immunoinformatics approaches. International Journal of Environmental Research and Public Health, 19(6), 3729.

  29. Alshammari, A., Alharbi, M., Alghamdi, A., Alharbi, S. A., Ashfaq, U. A., Tahir ul Qamar, M., … Ahmad, S. (2022). Computer-aided multi-epitope vaccine design against Enterobacter xiangfangensis. International Journal of Environmental Research and Public Health, 19(13), 7723.

  30. Albekairi, T. H., Alshammari, A., Alharbi, M., Alshammary, A. F., Tahir ul Qamar, M., Ullah, A., … Ahmad, S. (2022). Designing of a novel multi-antigenic epitope-based vaccine against E. hormaechei: An intergraded reverse vaccinology and immunoinformatics approach. Vaccines, 10(5), 665.

  31. Ismail, S., Ahmad, S., & Azam, S. S. (2020). Vaccinomics to design a novel single chimeric subunit vaccine for broad-spectrum immunological applications targeting nosocomial Enterobacteriaceae pathogens. European Journal of Pharmaceutical Sciences, 146, 105258. https://doi.org/10.1016/j.ejps.2020.105258

    Article  CAS  PubMed  Google Scholar 

  32. Jansen, K. U., & Anderson, A. S. (2018). The role of vaccines in fighting antimicrobial resistance (AMR). Human Vaccines and Immunotherapeutics, 14(9), 2142–2149.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Pruitt, K. D., Tatusova, T., & Maglott, D. R. (2005). NCBI Reference Sequence (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 33(suppl 1), D501–D504.

    CAS  PubMed  Google Scholar 

  34. Chaudhari, N. M., Gupta, V. K., & Dutta, C. (2016). BPGA—An ultra-fast pan-genome analysis pipeline. Scientific Reports, 6(1), 1–10.

    Article  Google Scholar 

  35. Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22(13), 1658–1659.

    Article  CAS  PubMed  Google Scholar 

  36. Peabody, M. A., Laird, M. R., Vlasschaert, C., Lo, R., & Brinkman, F. S. L. (2016). PSORTdb: Expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Research, 44(D1), D663–D668.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, Y., Yu, P., Luo, J., & Jiang, Y. (2003). Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mammalian Genome, 14(12), 859–865.

    Article  CAS  PubMed  Google Scholar 

  38. Ong, E., Cooke, M. F., Huffman, A., Xiang, Z., Wong, M. U., Wang, H., … He, Y. (2021). Vaxign2: The second generation of the first web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Research, 49, W671–W678.

  39. Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2—A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278.

    Article  PubMed  Google Scholar 

  40. ProtParam, E. (2017). ExPASy-ProtParam tool.

  41. Blast, N. (2015). Basic local alignment search tool. National Center for Biotechnology Information, Paris National Library of Medicine.

    Google Scholar 

  42. Dar, H. A., Ismail, S., Waheed, Y., Ahmad, S., Jamil, Z., Aziz, H., … Muhammad, K. (2021). Designing a multi-epitope vaccine against Mycobacteroides abscessus by pangenome-reverse vaccinology. Scientific Reports, 11(1), 1–18.

  43. Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., … Peters, B. (2019). The immune epitope database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339–D343.

  44. Ismail, S., Shahid, F., Khan, A., Bhatti, S., Ahmad, S., Naz, A., … ul Qamar, M. T. (2021). Pan-vaccinomics approach towards a universal vaccine candidate against WHO priority pathogens to address growing global antibiotic resistance. Computers in Biology and Medicine, 136, 104705.

  45. Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic acids research (Vol. 45, pp. W24–W29). Oxford University Press.

    Google Scholar 

  46. Sanami, S., Nazarian, S., Ahmad, S., Raeisi, E., Tahir ul Qamar, M., Tahmasebian, S., … Ghatreh Samani, M. (2023). In silico design and immunoinformatics analysis of a universal multi-epitope vaccine against monkeypox virus. PLoS One, 18(5), e0286224.

  47. Vita, R., Overton, J. A., Greenbaum, J. A., Ponomarenko, J., Clark, J. D., Cantrell, J. R., … Sette, A. (2015). The immune epitope database (IEDB) 3.0. Nucleic Acids Research, 43(D1), D405–D412.

  48. Albekairi, T. H., Alshammari, A., Alharbi, M., Alshammary, A. F., Tahir ul Qamar, M., Anwar, T., … Ahmad, S. (2022). Design of a multi-epitope vaccine against Tropheryma whipplei using immunoinformatics and molecular dynamics simulation techniques. Vaccines, 10(5), 691.

  49. Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Research, 33(suppl 2), W72–W76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Laskowski, R. A. (2022). PDBsum 1: A standalone program for generating PDBsum analyses. Protein Science, 31(12), e4473.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14(1), 1–7.

    Article  Google Scholar 

  52. Yousaf, M., Ismail, S., Ullah, A., & Bibi, S. (2022). Immuno-informatics profiling of monkeypox virus cell surface binding protein for designing a next generation multi-valent peptide-based vaccine. Frontiers in Immunology, 13, 1035924.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Berman, H., Henrick, K., Nakamura, H., & Markley, J. L. (2007). The worldwide Protein Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data. Nucleic Acids Research, 35(suppl 1), D301–D303.

    Article  CAS  PubMed  Google Scholar 

  54. Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein dockACing. Structure, 28(9), 1071–1081.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hansson, T., Oostenbrink, C., & van Gunsteren, W. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology, 12(2), 190–196.

    Article  CAS  PubMed  Google Scholar 

  56. Kaus, J. W., Pierce, L. T., Walker, R. C., & McCammon, J. A. (2013). Improving the efficiency of free energy calculations in the amber molecular dynamics package. Journal of Chemical Theory and Computation, 9(9), 4131–4139.

    Article  CAS  Google Scholar 

  57. Guvench, O., & MacKerell, A. D. (2008). Comparison of protein force fields for molecular dynamics simulations. Molecular modeling of proteins, 63–88.

  58. Mezei, M., Fleming, P. J., Srinivasan, R., & Rose, G. D. (2004). Polyproline II helix is the preferred conformation for unfolded polyalanine in water. Proteins: Structure, Function, and Bioinformatics, 55(3), 502–507.

    Article  CAS  Google Scholar 

  59. Chen, C., Li, W. Z., Song, Y. C., & Yang, J. (2009). Hydrogen bonding analysis of glycerol aqueous solutions: A molecular dynamics simulation study. Journal of Molecular Liquids, 146(1–2), 23–28.

    Article  CAS  Google Scholar 

  60. Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. Homology modeling: Methods and protocols, 231–257.

  61. Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82.

    Article  CAS  PubMed  Google Scholar 

  63. Ahmad, S., Navid, A., Farid, R., Abbas, G., Ahmad, F., Zaman, N., … Azam, S. S. (2020). Design of a novel multi epitope-based vaccine for pandemic coronavirus disease (COVID-19) by vaccinomics and probable prevention strategy against avenging zoonotics. European Journal of Pharmaceutical Sciences, 151, 105387.

  64. Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Stolfi, P., Castiglione, F., Mastrostefano, E., Di Biase, I., Di Biase, S., Palmieri, G., & Prisco, A. (2022). In-silico evaluation of adenoviral COVID-19 vaccination protocols: Assessment of immunological memory up to 6 months after the third dose. Frontiers in Immunology, 13, 998262.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Sharpe, H. R., Bowyer, G., Brackenridge, S., & Lambe, T. (2019). HLA-E: Exploiting pathogen-host interactions for vaccine development. Clinical and Experimental Immunology, 196(2), 167–177.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Rahman, N., Ajmal, A., Ali, F., & Rastrelli, L. (2020). Core proteome mediated therapeutic target mining and multi-epitope vaccine design for Helicobacter pylori. Genomics, 112(5), 3473–3483.

    Article  CAS  PubMed  Google Scholar 

  68. Pruitt, K. D., Tatusova, T., & Maglott, D. R. (2007). NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 35(suppl 1), D61–D65.

    Article  CAS  PubMed  Google Scholar 

  69. Chaplin, D. D. (2010). Overview of the immune response. Journal of Allergy and Clinical Immunology, 125(2), S3–S23.

    Article  PubMed  Google Scholar 

  70. Sánchez-Aparicio, M. T., Ayllon, J., Leo-Macias, A., Wolff, T., & García-Sastre, A. (2017). Subcellular localizations of RIG-I, TRIM25, and MAVS complexes. Journal of Virology, 91(2), 10–1128.

    Article  Google Scholar 

  71. Rawal, K., Sinha, R., Abbasi, B. A., Chaudhary, A., Nath, S. K., Kumari, P., … Mishra, K. (2021). Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Scientific Reports, 11(1), 1–25.

  72. Alharbi, M., Alshammari, A., Alasmari, A. F., Alharbi, S., Tahir ul Qamar, M., Abbasi, S. W., … Ahmad, S. (2022). Whole proteome-based therapeutic targets annotation and designing of multi-epitope-based vaccines against the gram-negative XDR-Alcaligenes faecalis bacterium. Vaccines, 10(3), 462.

  73. Nawaz, M., Ullah, A., Al-Harbi, A. I., Haq, M. U., Hameed, A. R., Ahmad, S., … Irfan, M. (2022). Genome-based multi-antigenic epitopes vaccine construct designing against Staphylococcus hominis using reverse vaccinology and biophysical approaches. Vaccines, 10(10), 1729.

  74. Attar, R. (2023). Integrated computational approaches assisted development of a novel multi-epitope vaccine against MDR Streptococcus pseudopneumoniae. Brazilian Journal of Biology, 84, e269313.

    Article  CAS  Google Scholar 

  75. Mangat, H. K., Rani, M., Pathak, R. K., Yadav, I. S., Utreja, D., Chhuneja, P. K., & Chhuneja, P. (2022). Virtual screening, molecular dynamics and binding energy-MM-PBSA studies of natural compounds to identify potential EcR inhibitors against Bemisia tabaci Gennadius. PLoS One, 17(1), e0261545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Suleman, M., Rashid, F., Ali, S., Sher, H., Luo, S., Xie, L., & Xie, Z. (2022). Immunoinformatic-based design of immune-boosting multiepitope subunit vaccines against monkeypox virus and validation through molecular dynamics and immune simulation. Frontiers in Immunology, 13, 1042997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Misra, N., Panda, P. K., Shah, K., Sukla, L. B., & Chaubey, P. (2011). Population coverage analysis of T-Cell epitopes of Neisseria meningitidis serogroup B from Iron acquisition proteins for vaccine design. Bioinformation, 6(7), 255.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Farjadian, S., Naruse, T., Kawata, H., Ghaderi, A., Bahram, S., & Inoko, H. (2004). Molecular analysis of HLA allele frequencies and haplotypes in Baloch of Iran compared with related populations of Pakistan. Tissue Antigens, 64(5), 581–587.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSPD2023R632), King Saud University, Riyadh, Saudi Arabia.

Funding

The authors extend their appreciation to the Researchers Supporting Project number (RSPD2023R632), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

AU, BR, MH, and SK (data curation, manuscript writing), TNA, YW, and MH (manuscript review, analyses validation), TN, RM, SS, and BR (manuscript proofread, resources, visualization), and MI and SA (supervision, conceptualization and final manuscript review).

Corresponding author

Correspondence to Sajjad Ahmad.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, A., Rehman, B., Khan, S. et al. An In Silico Multi-epitopes Vaccine Ensemble and Characterization Against Nosocomial Proteus penneri. Mol Biotechnol (2023). https://doi.org/10.1007/s12033-023-00949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12033-023-00949-y

Keywords

Navigation