Skip to main content
Log in

Structural basis for hijacking of the host ACBD3 protein by bovine and porcine enteroviruses and kobuviruses

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Picornaviruses infect a wide range of mammals including livestock such as cattle and swine. As with other picornavirus genera such as Aphthovirus, there is emerging evidence of a significant economic impact of livestock infections caused by members of the genera Enterovirus and Kobuvirus. While the human-infecting enteroviruses and kobuviruses have been intensively studied during the past decades in great detail, research on livestock-infecting viruses has been mostly limited to the genomic characterization of the viral strains identified worldwide. Here, we extend our previous studies of the structure and function of the complexes composed of the non-structural 3A proteins of human-infecting enteroviruses and kobuviruses and the host ACBD3 protein and present a structural and functional characterization of the complexes of the following livestock-infecting picornaviruses: bovine enteroviruses EV-E and EV-F, porcine enterovirus EV-G, and porcine kobuvirus AiV-C. We present a series of crystal structures of these complexes and demonstrate the role of these complexes in facilitation of viral replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zell R, Delwart E, Gorbalenya AE, Hovi T, King AMQ, Knowles NJ, Lindberg AM, Pallansch MA, Palmenberg AC, Reuter G, Simmonds P, Skern T, Stanway G, Yamashita T, ICTV Report Consortium (2017) ICTV virus taxonomy profile: Picornaviridae. J Gen Virol 98(10):2421–2422. https://doi.org/10.1099/jgv.0.000911

    Article  CAS  PubMed  Google Scholar 

  2. Blas-Machado U, Saliki JT, Boileau MJ, Goens SD, Caseltine SL, Duffy JC, Welsh RD (2007) Fatal ulcerative and hemorrhagic typhlocolitis in a pregnant heifer associated with natural bovine enterovirus type-1 infection. Vet Pathol 44(1):110–115. https://doi.org/10.1354/vp.44-1-110

    Article  CAS  PubMed  Google Scholar 

  3. Zhu L, Xing Z, Gai X, Li S, San Z, Wang X (2014) Identification of a novel enterovirus E isolates HY12 from cattle with severe respiratory and enteric diseases. PLoS One 9(5):e97730. https://doi.org/10.1371/journal.pone.0097730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Candido M, Almeida-Queiroz SR, Buzinaro MG, Livonesi MC, Fernandes AM, Sousa RLM (2019) Detection and molecular characterisation of bovine Enterovirus in Brazil: four decades since the first report. Epidemiol Infect 147:e126. https://doi.org/10.1017/S0950268818003394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang S, Wang Y, Shen Q, Zhang W, Hua X (2013) Prevalence of porcine enterovirus 9 in pigs in middle and eastern China. Virol J 10:99. https://doi.org/10.1186/1743-422X-10-99

    Article  PubMed  PubMed Central  Google Scholar 

  6. Knutson TP, Velayudhan BT, Marthaler DG (2017) A porcine enterovirus G associated with enteric disease contains a novel papain-like cysteine protease. J Gen Virol 98(6):1305–1310. https://doi.org/10.1099/jgv.0.000799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bunke J, Receveur K, Oeser AC, Fickenscher H, Zell R, Krumbholz A (2018) High genetic diversity of porcine enterovirus G in Schleswig-Holstein, Germany. Arch Virol 163(2):489–493. https://doi.org/10.1007/s00705-017-3612-x

    Article  CAS  PubMed  Google Scholar 

  8. Reuter G, Boros Á, Pankovics P (2011) Kobuviruses—a comprehensive review. Rev Med Virol 21:32–41. https://doi.org/10.1002/rmv.677

    Article  PubMed  Google Scholar 

  9. Reuter G, Nemes C, Boros A, Kapusinszky B, Delwart E, Pankovics P (2013) Porcine kobuvirus in wild boars (Sus scrofa). Arch Virol 158(1):281–282. https://doi.org/10.1007/s00705-012-1456-y

    Article  CAS  PubMed  Google Scholar 

  10. Park SJ, Kim HK, Moon HJ, Song DS, Rho SM, Han JY, Nguyen VG, Park BK (2010) Molecular detection of porcine kobuviruses in pigs in Korea and their association with diarrhea. Arch Virol 155(11):1803–1811. https://doi.org/10.1007/s00705-010-0774-1

    Article  CAS  PubMed  Google Scholar 

  11. Yue X, Qian Y, Gim B, Lee I (2019) Acyl-CoA-binding domain-containing 3 (ACBD3; PAP7; GCP60): a multi-functional membrane domain organizer. Int J Mol Sci 20(8). https://doi.org/10.3390/ijms20082028

    Article  CAS  Google Scholar 

  12. Greninger AL, Knudsen GM, Betegon M, Burlingame AL, DeRisi JL (2012) The 3A protein from multiple picornaviruses utilizes the golgi adaptor protein ACBD3 to recruit PI4KIIIβ. J Virol 86:3605–3616. https://doi.org/10.1128/JVI.06778-11

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sasaki J, Ishikawa K, Arita M, Taniguchi K (2012) ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. EMBO J 31:754–766. https://doi.org/10.1038/emboj.2011.429

    Article  CAS  PubMed  Google Scholar 

  14. Greninger AL, Knudsen GM, Betegon M, Burlingame AL, DeRisi JL (2013) ACBD3 interaction with TBC1 domain 22 protein is differentially affected by enteroviral and kobuviral 3A protein binding. mBio 4:e00098-00013. https://doi.org/10.1128/mbio.00098-13

  15. Ishikawa-Sasaki K, Sasaki J, Taniguchi K (2014) A complex comprising phosphatidylinositol 4-kinase IIIβ, ACBD3, and Aichi virus proteins enhances phosphatidylinositol 4-phosphate synthesis and is critical for formation of the viral replication complex. J Virol 88:6586–6598. https://doi.org/10.1128/JVI.00208-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lei X, Xiao X, Zhang Z, Ma Y, Qi J, Wu C, Xiao Y, Zhou Z, He B, Wang J (2017) The Golgi protein ACBD3 facilitates Enterovirus 71 replication by interacting with 3A. Sci Rep 7:44592. https://doi.org/10.1038/srep44592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiao X, Lei X, Zhang Z, Ma Y, Qi J, Wu C, Xiao Y, Li L, He B, Wang J (2017) Enterovirus 3A facilitates viral replication by promoting PI4KB-ACBD3 interaction. J Virol. https://doi.org/10.1128/JVI.00791-17

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lyoo H, van der Schaar HM, Dorobantu CM, Rabouw HH, Strating J, van Kuppeveld FJM (2019) ACBD3 is an essential pan-enterovirus host factor that mediates the interaction between viral 3A protein and cellular protein PI4KB. mBio 10(1). https://doi.org/10.1128/mbio.02742-18

  19. Klima M, Chalupska D, Rozycki B, Humpolickova J, Rezabkova L, Silhan J, Baumlova A, Dubankova A, Boura E (2017) Kobuviral non-structural 3A proteins act as molecular harnesses to hijack the host ACBD3 protein. Structure 25(2):219–230. https://doi.org/10.1016/j.str.2016.11.021

    Article  CAS  PubMed  Google Scholar 

  20. Horova V, Lyoo H, Różycki B, Chalupska D, Smola M, Humpolickova J, Strating JRPM, van Kuppeveld FJM, Boura E, Klima M (2019) Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites. PLoS Pathog 15(8):e1007962. https://doi.org/10.1371/journal.ppat.1007962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572. https://doi.org/10.1038/nbt1037

    Article  CAS  Google Scholar 

  22. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. https://doi.org/10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  23. Hillenkamp F, Peter-Katalinić J (2007) MALDI MS: a practical guide to instrumentation. Methods Appl. https://doi.org/10.1002/9783527610464

    Article  Google Scholar 

  24. Mueller U, Darowski N, Fuchs MR, Förster R, Hellmig M, Paithankar KS, Pühringer S, Steffien M, Zocher G, Weiss MS (2012) Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J Synchrotron Radiat 19:442–449. https://doi.org/10.1107/S0909049512006395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kabsch W (2010) XDS. Acta Crystallogr D 66:125–132. https://doi.org/10.1107/S0907444909047337

    Article  CAS  PubMed  Google Scholar 

  26. Krug M, Weiss MS, Heinemann U, Mueller U (2012) XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J Appl Crystallogr 45:568–572. https://doi.org/10.1107/S0021889812011715

    Article  CAS  Google Scholar 

  27. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674. https://doi.org/10.1107/S0021889807021206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX : a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 66:213–221. https://doi.org/10.1107/S0907444909052925

    Article  CAS  PubMed  Google Scholar 

  29. Cowtan K (2006) The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr D 62:1002–1011. https://doi.org/10.1107/S0907444906022116

    Article  CAS  PubMed  Google Scholar 

  30. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D 67:235–242. https://doi.org/10.1107/S0907444910045749

    Article  CAS  PubMed  Google Scholar 

  31. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D 68:352–367. https://doi.org/10.1107/S0907444912001308

    Article  CAS  PubMed  Google Scholar 

  32. Emsley P, Cowtan K (2004) Coot : model-building tools for molecular graphics. Acta Crystallogr D 60:2126–2132. https://doi.org/10.1107/S0907444904019158

    Article  CAS  PubMed  Google Scholar 

  33. The PyMOL molecular graphics system, Version 1.8 Schrödinger, LLC.

  34. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(Web Server issue):W382–W388. https://doi.org/10.1093/nar/gki387

    Article  CAS  Google Scholar 

  35. Wessels E, Duijsings D, Niu T-K, Neumann S, Oorschot VM, de Lange F, Lanke KHW, Klumperman J, Henke A, Jackson CL, Melchers WJG, van Kuppeveld FJM (2006) A viral protein that blocks Arf1-mediated COP-I assembly by inhibiting the guanine nucleotide exchange factor GBF1. Dev Cell 11:191–201. https://doi.org/10.1016/j.devcel.2006.06.005

    Article  CAS  PubMed  Google Scholar 

  36. Dodd DA, Giddings TH, Kirkegaard K (2001) Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. J Virol 75:8158–8165. https://doi.org/10.1128/JVI.75.17.8158-8165.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deitz SB, Dodd DA, Cooper S, Parham P, Kirkegaard K (2000) MHC I-dependent antigen presentation is inhibited by poliovirus protein 3A. Proc Natl Acad Sci USA 97:13790–13795. https://doi.org/10.1073/pnas.250483097

    Article  CAS  PubMed  Google Scholar 

  38. Klima M, Tóth DJ, Hexnerova R, Baumlova A, Chalupska D, Tykvart J, Rezabkova L, Sengupta N, Man P, Dubankova A, Humpolickova J, Nencka R, Veverka V, Balla T, Boura E (2016) Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Sci Rep 6:23641. https://doi.org/10.1038/srep23641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mejdrova I, Chalupska D, Plackova P, Mueller C, Sala M, Klima M, Baumlova A, Hrebabecky H, Prochazkova E, Dejmek M, Strunin D, Weber J, Lee G, Matousova M, Mertlikova-Kaiserova H, Ziebuhr J, Birkus G, Boura E, Nencka R (2017) Rational design of novel highly potent and selective phosphatidylinositol 4-Kinase III beta (PI4KB) inhibitors as broad-spectrum antiviral agents and tools for chemical biology. J Med Chem 60(1):100–118. https://doi.org/10.1021/acs.jmedchem.6b01465

    Article  CAS  PubMed  Google Scholar 

  40. Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B (2013) A four-step cycle driven by PI(4)P HYDROLYSIS DIRECTS STEROL/PI(4)P exchange by the ER-Golgi Tether OSBP. Cell 155:830–843. https://doi.org/10.1016/j.cell.2013.09.056

    Article  CAS  PubMed  Google Scholar 

  41. Roulin PS, Lötzerich M, Torta F, Tanner LB, van Kuppeveld FJM, Wenk MR, Greber UF (2014) Rhinovirus uses a phosphatidylinositol 4-phosphate/cholesterol counter-current for the formation of replication compartments at the ER-Golgi interface. Cell Host Microbe 16:677–690. https://doi.org/10.1016/j.chom.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  42. Arita M (2014) Phosphatidylinositol-4 kinase III beta and oxysterol-binding protein accumulate unesterified cholesterol on poliovirus-induced membrane structure. Microbiol Immunol 58:239–256. https://doi.org/10.1111/1348-0421.12144

    Article  CAS  PubMed  Google Scholar 

  43. Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, Narayanaswamy P, Wenk MR, Nakatsu F, De Camilli P (2015) PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349:428–432. https://doi.org/10.1126/science.aab1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Carolyn Machamer for sharing the ACBD3-encoding plasmid, and Frank JM van Kuppeveld for fruitful discussions. We thank Helmholtz-Zentrum Berlin for the allocation of synchrotron radiation beamtime. The project was supported by the Czech Science Foundation (Grant number 17-07058Y), Czech Academy of Sciences (RVO: 61388963), and European Regional Development Fund (ERDF/ESF project “Chemical biology for drugging undruggable targets-ChemBioDrug”, number CZ.02.1.01/0.0/0.0/16_019/0000729).

Author information

Authors and Affiliations

Authors

Contributions

MS performed DNA cloning, protein purifications, and crystallographic experiments, VH contributed to DNA cloning, carried out microscale thermophoresis, the co-immunoprecipitation and viral subgenomic replicon assays, EB conceived the study and revised the manuscript, MK supervised the project, solved the crystal structures, and wrote the manuscript.

Corresponding authors

Correspondence to Evzen Boura or Martin Klima.

Additional information

Handling Editor: Diego G. Diel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smola, M., Horova, V., Boura, E. et al. Structural basis for hijacking of the host ACBD3 protein by bovine and porcine enteroviruses and kobuviruses. Arch Virol 165, 355–366 (2020). https://doi.org/10.1007/s00705-019-04490-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04490-9

Navigation