Skip to main content

Advertisement

Log in

Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: a recombinant Newcastle disease virus approach

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Classical swine fever (CSF) is an important viral disease of domestic pigs and wild boar. The structural proteins E2 and Erns of classical swine fever virus (CSFV), which participate in the attachment of the virion to the host cell surface and its subsequent entry, are immunogenic. The E2 and Erns proteins are used for diagnosis and the development of vaccines against CSFV infection in swine. Newcastle disease virus (NDV) has been successfully used as a viral vector to express heterologous proteins. In the present study, the E2 and Erns proteins of CSFV were expressed in cell culture as well as embryonated chicken eggs, using recombinant NDV (rNDV). Rescued rNDV expressing the E2 and Erns proteins induced the production of CSFV-neutralizing antibodies upon intranasal vaccination of pigs. Serum samples from vaccinated animals were found to neutralize both homologous and heterologous CSFV strains. Furthermore, rNDV expressing the E2 and Erns proteins of CSFV was used to develop an indirect ELISA, which was used to measure the the antibody titers of randomly collected serum samples. The results suggested that the ELISA based on rNDV-expressed E2 and Erns proteins could be used to screen for CSFV infections. This study shows that rNDV-based expression of CSFV antigens is potentially applicable for development of vaccines and diagnostic tests for CSFV infection. This approach could be an economically favorable alternative to the existing vaccine and diagnostics for CSFV in pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexander DJ, Manvell RJ, Collins MS, Brockman SJ, Westbury HA, Morgan I, Austin FJ (1989) Characterization of paramyxoviruses isolated from penguins in Antarctica and sub-Antarctica during 1976–1979. Arch Virol 109:135–143

    Article  CAS  PubMed  Google Scholar 

  2. Arifin MA, Mel M, Abdul Karim MI, Ideris A (2010) Production of Newcastle disease virus by Vero cells grown on cytodex 1 microcarriers in a 2-litre stirred tank bioreactor. J Biomed Biotechnol 2010:586363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Artois M, Delahay R, Guberti V, Cheeseman C (2001) Control of infectious diseases of wildlife in Europe. Vet J 162:141–152

    Article  CAS  PubMed  Google Scholar 

  4. Barman NN, Bora DP, Khatoon E, Mandal S, Rakshit A, Rajbongshi G, Depner K, Chakraborty A, Kumar S (2016) Classical swine fever in wild hog: report of its prevalence in Northeast India. Transbound Emerg Dis 63:540–547

    Article  CAS  PubMed  Google Scholar 

  5. Beer M, Reimann I, Hoffmann B, Depner K (2007) Novel marker vaccines against classical swine fever. Vaccine 25:5665–5670

    Article  CAS  PubMed  Google Scholar 

  6. Blome S, Gabriel C, Schmeiser S, Meyer D, Meindl-Bohmer A, Koenen F, Beer M (2014) Efficacy of marker vaccine candidate CP7_E2alf against challenge with classical swine fever virus isolates of different genotypes. Vet Microbiol 169:8–17

    Article  CAS  PubMed  Google Scholar 

  7. Bouma A, de Smit AJ, de Kluijver EP, Terpstra C, Moormann RJ (1999) Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus. Vet Microbiol 66:101–114

    Article  CAS  PubMed  Google Scholar 

  8. Bouma A, De Smit AJ, De Jong MC, De Kluijver EP, Moormann RJ (2000) Determination of the onset of the herd-immunity induced by the E2 sub-unit vaccine against classical swine fever virus. Vaccine 18:1374–1381

    Article  CAS  PubMed  Google Scholar 

  9. Cheng CY, Wu CW, Lin GJ, Lee WC, Chien MS, Huang C (2014) Enhancing expression of the classical swine fever virus glycoprotein E2 in yeast and its application to a blocking ELISA. J Biotechnol 174:1–6

    Article  CAS  PubMed  Google Scholar 

  10. Cheng TC, Pan CH, Chen CS, Chuang KH, Chuang CH, Huang CC, Chu YY, Yang YC, Chu PY, Kao CH, Hsieh YC, Cheng TL (2015) Direct coating of culture medium from cells secreting classical swine fever virus E2 antigen on ELISA plates for detection of E2-specific antibodies. Vet J 205:107–109

    Article  CAS  PubMed  Google Scholar 

  11. Colijn EO, Bloemraad M, Wensvoort G (1997) An improved ELISA for the detection of serum antibodies directed against classical swine fever virus. Vet Microbiol 59:15–25

    Article  CAS  PubMed  Google Scholar 

  12. De Smit AJ, Terpstra C, Wensvoort G (1994) Comparison of viral isolation methods from whole blood or blood components for early diagnosis of CSF. Commission of the European Communities. Rep Meeting Nat Swine Fever Lab Brussels 24–25 November DGVI/5848/95:21–22

  13. Dewulf J, Laevens H, Koenen F, Mintiens K, De Kruif A (2001) An experimental infection with classical swine fever virus in pregnant sows: transmission of the virus, course of the disease, antibody response and effect on gestation. J Vet Med B Infect Dis Vet Public Health 48:583–591

    Article  CAS  PubMed  Google Scholar 

  14. DiNapoli JM, Kotelkin A, Yang L, Elankumaran S, Murphy BR, Samal SK, Collins PL, Bukreyev A (2007) Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proc Natl Acad Sci USA 104:9788–9793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elbers K, Tautz N, Becher P, Stoll D, Rumenapf T, Thiel HJ (1996) Processing in the pestivirus E2-NS2 region: identification of proteins p7 and E2p7. J Virol 70:4131–4135

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Flores-Gutierrez GH, Infante F (2008) Resolution of a classical swine fever outbreak in the United States–Mexico border region. Transbound Emerg Dis 55:377–381

    Article  CAS  PubMed  Google Scholar 

  17. Fournillier A, Wychowski C, Boucreux D, Baumert TF, Meunier JC, Jacobs D, Muguet S, Depla E, Inchauspe G (2001) Induction of hepatitis C virus E1 envelope protein-specific immune response can be enhanced by mutation of N-glycosylation sites. J Virol 75:12088–12097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fulcher RA, Cole LE, Janowicz DM, Toffer KL, Fortney KR, Katz BP, Orndorff PE, Spinola SM, Kawula TH (2006) Expression of Haemophilus ducreyi collagen binding outer membrane protein NcaA is required for virulence in swine and human challenge models of chancroid. Infect Immun 74:2651–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gavrilov BK, Rogers K, Fernandez-Sainz IJ, Holinka LG, Borca MV, Risatti GR (2011) Effects of glycosylation on antigenicity and immunogenicity of classical swine fever virus envelope proteins. Virology 420:135–145

    Article  CAS  PubMed  Google Scholar 

  20. Gong W, Li J, Wang Z, Sun J, Mi S, Lu Z, Cao J, Dou Z, Sun Y, Wang P, Yuan K, Zhang L, Zhou X, He S, Tu C (2019) Virulence evaluation of classical swine fever virus subgenotype 2.1 and 2.2 isolates circulating in China. Vet Microbiol 232:114–120

    Article  PubMed  Google Scholar 

  21. Greiser-Wilke I, Moennig V, Coulibaly CO, Dahle J, Leder L, Liess B (1990) Identification of conserved epitopes on a hog cholera virus protein. Arch Virol 111:213–225

    Article  CAS  PubMed  Google Scholar 

  22. Haigwood NL, Nara PL, Brooks E, Van Nest GA, Ott G, Higgins KW, Dunlop N, Scandella CJ, Eichberg JW, Steimer KS (1992) Native but not denatured recombinant human immunodeficiency virus type 1 gp120 generates broad-spectrum neutralizing antibodies in baboons. J Virol 66:172–182

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoffmann B, Beer M, Schelp C, Schirrmeier H, Depner K (2005) Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. J Virol Methods 130:36–44

    Article  CAS  PubMed  Google Scholar 

  24. Huang YL, Deng MC, Wang FI, Huang CC, Chang CY (2014) The challenges of classical swine fever control: modified live and E2 subunit vaccines. Virus Res 179:1–11

    Article  CAS  PubMed  Google Scholar 

  25. Huang Z, Elankumaran S, Yunus AS, Samal SK (2004) A recombinant Newcastle disease virus (NDV) expressing VP2 protein of infectious bursal disease virus (IBDV) protects against NDV and IBDV. J Virol 78:10054–10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hulst MM, Westra DF, Wensvoort G, Moormann RJ (1993) Glycoprotein E1 of hog cholera virus expressed in insect cells protects swine from hog cholera. J Virol 67:5435–5442

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hulst MM, van Gennip HG, Moormann RJ (2000) Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein E(rns). J Virol 74:9553–9561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jang G, Kim JA, Kang WM, Yang HS, Park C, Jeong K, Moon SU, Park CK, Lyoo YS, Lee C (2019) Endemic outbreaks due to the re-emergence of classical swine fever after accidental introduction of modified live LOM vaccine on Jeju Island, South Korea. Transbound Emerg Dis 66:634–639

    Article  CAS  PubMed  Google Scholar 

  29. Ji W, Guo Z, Ding NZ, He CQ (2015) Studying classical swine fever virus: making the best of a bad virus. Virus Res 197:35–47

    Article  CAS  PubMed  Google Scholar 

  30. Khatoon E, Barman NN, Deka M, Rajbongshi G, Baruah K, Deka N, Bora DP, Kumar S (2017) Molecular characterization of classical swine fever virus isolates from India during 2012–14. Acta Trop 170:184–189

    Article  CAS  PubMed  Google Scholar 

  31. Khattar SK, Collins PL, Samal SK (2010) Immunization of cattle with recombinant Newcastle disease virus expressing bovine herpesvirus-1 (BHV-1) glycoprotein D induces mucosal and serum antibody responses and provides partial protection against BHV-1. Vaccine 28:3159–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Konig M, Lengsfeld T, Pauly T, Stark R, Thiel HJ (1995) Classical swine fever virus: independent induction of protective immunity by two structural glycoproteins. J Virol 69:6479–6486

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kortekaas J, Dekker A, de Boer SM, Weerdmeester K, Vloet RP, de Wit AA, Peeters BP, Moormann RJ (2010) Intramuscular inoculation of calves with an experimental Newcastle disease virus-based vector vaccine elicits neutralizing antibodies against Rift Valley fever virus. Vaccine 28:2271–2276

    Article  CAS  PubMed  Google Scholar 

  34. Kosmidou A, Buttner M, Meyers G (1998) Isolation and characterization of cytopathogenic classical swine fever virus (CSFV). Arch Virol 143:1295–1309

    Article  CAS  PubMed  Google Scholar 

  35. Kumar R, Barman NN, Khatoon E, Kumar S (2016) Development of single dilution immunoassay to detect E2 protein specific classical swine fever virus antibody. Vet Immunol Immunopathol 172:50–54

    Article  CAS  PubMed  Google Scholar 

  36. Kumar S, Nayak B, Collins PL, Samal SK (2011) Evaluation of the Newcastle disease virus F and HN proteins in protective immunity by using a recombinant avian paramyxovirus type 3 vector in chickens. J Virol 85:6521–6534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar R, Kumar V, Kumar S (2018) Production of recombinant Erns protein of classical swine fever virus and assessment of its enzymatic activity: a recombinant Newcastle disease virus-based approach. Process Biochem 66:113–119

    Article  CAS  Google Scholar 

  38. Lamp B, Riedel C, Wentz E, Tortorici MA, Rumenapf T (2013) Autocatalytic cleavage within classical swine fever virus NS3 leads to a functional separation of protease and helicase. J Virol 87:11872–11883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li W, Mao L, Yang L, Zhou B, Jiang J (2013) Development and partial validation of a recombinant E2-based indirect ELISA for detection of specific IgM antibody responses against classical swine fever virus. J Virol Methods 191:63–68

    Article  CAS  PubMed  Google Scholar 

  40. Lin GJ, Deng MC, Chen ZW, Liu TY, Wu CW, Cheng CY, Chien MS, Huang C (2012) Yeast expressed classical swine fever E2 subunit vaccine candidate provides complete protection against lethal challenge infection and prevents horizontal virus transmission. Vaccine 30:2336–2341

    Article  CAS  PubMed  Google Scholar 

  41. Lin GZ, Zheng FY, Zhou JZ, Cao XA, Gong XW, Wang GH, Qiu CQ (2010) An indirect ELISA of classical swine fever virus based on quadruple antigenic epitope peptide expressed in E. coli. Virol Sin 25:71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin M, Lin F, Mallory M, Clavijo A (2000) Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. J Virol 74:11619–11625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lowings P, Ibata G, Needham J, Paton D (1996) Classical swine fever virus diversity and evolution. J Gen Virol 77(Pt 6):1311–1321

    Article  CAS  PubMed  Google Scholar 

  44. Madera R, Gong W, Wang L, Burakova Y, Lleellish K, Galliher-Beckley A, Nietfeld J, Henningson J, Jia K, Li P, Bai J, Schlup J, McVey S, Tu C, Shi J (2016) Pigs immunized with a novel E2 subunit vaccine are protected from subgenotype heterologous classical swine fever virus challenge. BMC Vet Res 12:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McGinnes LW, Pantua H, Reitter J, Morrison TG (2006) Newcastle disease virus: propagation, quantification, and storage. Curr Protoc Microbiol Chapter 15:Unit 15F 12

  46. Meyers G, Rumenapf T, Thiel HJ (1989) Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology 171:555–567

    Article  CAS  PubMed  Google Scholar 

  47. Meyers G, Thiel HJ, Rumenapf T (1996) Classical swine fever virus: recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles. J Virol 70:1588–1595

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Moennig V, Floegel-Niesmann G, Greiser-Wilke I (2003) Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J 165:11–20

    Article  CAS  PubMed  Google Scholar 

  49. Molouki A, Peeters B (2017) Rescue of recombinant Newcastle disease virus: a short history of how it all started. Arch Virol 162:1845–1854

    Article  CAS  PubMed  Google Scholar 

  50. OIE (2008) Manual of diagnostic tests and vaccines for terrestrial animals. World Organisation for Animal Health OIE, Paris

    Google Scholar 

  51. Pannhorst K, Frohlich A, Staubach C, Meyer D, Blome S, Becher P (2015) Evaluation of an Erns-based enzyme-linked immunosorbent assay to distinguish Classical swine fever virus-infected pigs from pigs vaccinated with CP7_E2alf. J Vet Diagn Investig 27:449–460

    Article  CAS  Google Scholar 

  52. Park MS, Steel J, Garcia-Sastre A, Swayne D, Palese P (2006) Engineered viral vaccine constructs with dual specificity: avian influenza and Newcastle disease. Proc Natl Acad Sci USA 103:8203–8208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Peeters BP, de Leeuw OS, Koch G, Gielkens AL (1999) Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol 73:5001–5009

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Qi Y, Liu LC, Zhang BQ, Shen Z, Wang J, Chen YH (2008) Characterization of antibody responses against a neutralizing epitope on the glycoprotein E2 of classical swine fever virus. Arch Virol 153:1593–1598

    Article  CAS  PubMed  Google Scholar 

  55. Qi Y, Zhang BQ, Shen Z, Chen YH (2009) Candidate vaccine focused on a classical swine fever virus epitope induced antibodies with neutralizing activity. Viral Immunol 22:205–213

    Article  CAS  PubMed  Google Scholar 

  56. Ressang AA (1973) Studies on the pathogenesis of hog cholera. I. Demonstration of hog cholera virus subsequent to oral exposure. Zentralbl Veterinarmed B 20:256–271

    Article  CAS  PubMed  Google Scholar 

  57. Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL et al (1990) Gene transfer into humans-immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 323:570–578

    Article  CAS  PubMed  Google Scholar 

  58. Rumenapf T, Stark R, Meyers G, Thiel HJ (1991) Structural proteins of hog cholera virus expressed by vaccinia virus: further characterization and induction of protective immunity. J Virol 65:589–597

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schroeder S, von Rosen T, Blome S, Loeffen W, Haegeman A, Koenen F, Uttenthal A (2012) Evaluation of classical swine fever virus antibody detection assays with an emphasis on the differentiation of infected from vaccinated animals. Rev Sci Tech 31:997–1010

    Article  CAS  PubMed  Google Scholar 

  60. Shimotohno K, Temin HM (1981) Formation of infectious progeny virus after insertion of herpes simplex thymidine kinase gene into DNA of an avian retrovirus. Cell 26:67–77

    Article  CAS  PubMed  Google Scholar 

  61. Snyder DB, Marquardt WW, Mallinson ET, Savage PK, Allen DC (1984) Rapid serological profiling by enzyme-linked immunosorbent assay. III. Simultaneous measurements of antibody titers to infectious bronchitis, infectious bursal disease, and Newcastle disease viruses in a single serum dilution. Avian Dis 28:12–24

    Article  CAS  PubMed  Google Scholar 

  62. Suarez M, Sordo Y, Prieto Y, Rodriguez MP, Mendez L, Rodriguez EM, Rodriguez-Mallon A, Lorenzo E, Santana E, Gonzalez N, Naranjo P, Frias MT, Carpio Y, Estrada MP (2017) A single dose of the novel chimeric subunit vaccine E2-CD154 confers early full protection against classical swine fever virus. Vaccine 35:4437–4443

    Article  CAS  PubMed  Google Scholar 

  63. Tabin CJ, Hoffmann JW, Goff SP, Weinberg RA (1982) Adaptation of a retrovirus as a eucaryotic vector transmitting the herpes simplex virus thymidine kinase gene. Mol Cell Biol 2:426–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takada A, Kida H (1996) Protective immune response of chickens against Newcastle disease, induced by the intranasal vaccination with inactivated virus. Vet Microbiol 50:17–25

    Article  CAS  PubMed  Google Scholar 

  65. Ukai K, Sakakura Y (1992) Newcastle disease viral infection in chicken nasal turbinate and maxillary sinus. Acta Otolaryngol 112:710–716

    Article  CAS  PubMed  Google Scholar 

  66. van Rijn PA, Bossers A, Wensvoort G, Moormann RJ (1996) Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J Gen Virol 77(Pt 11):2737–2745

    Article  PubMed  Google Scholar 

  67. van Zijl M, Wensvoort G, de Kluyver E, Hulst M, van der Gulden H, Gielkens A, Berns A, Moormann R (1991) Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera. J Virol 65:2761–2765

    PubMed  PubMed Central  Google Scholar 

  68. Vilcek S, Leskova V, Meyer D, Postel A, Becher P (2014) Molecular characterization of border disease virus strain Aveyron. Vet Microbiol 171:87–92

    Article  CAS  PubMed  Google Scholar 

  69. Wang Z, Lu Y, Ding M (2000) Effects of classical swine fever virus lapinized strain on its host cells. Wei sheng wu xue tong bao 27:79–84

    CAS  Google Scholar 

  70. Wei CM, Gibson M, Spear PG, Scolnick EM (1981) Construction and isolation of a transmissible retrovirus containing the src gene of Harvey murine sarcoma virus and the thymidine kinase gene of herpes simplex virus type 1. J Virol 39:935–944

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu M, Wang LF, Shiell BJ, Morrissy CJ, Westbury HA (1996) Fine mapping of a C-terminal linear epitope highly conserved among the major envelope glycoprotein E2 (gp51 to gp54) of different pestiviruses. Virology 222:289–292

    Article  CAS  PubMed  Google Scholar 

  72. Zhang F, Yu M, Weiland E, Morrissy C, Zhang N, Westbury H, Wang LF (2006) Characterization of epitopes for neutralizing monoclonal antibodies to classical swine fever virus E2 and Erns using phage-displayed random peptide library. Arch Virol 151:37–54

    Article  CAS  PubMed  Google Scholar 

  73. Zhao R, Sun J, Qi T, Zhao W, Han Z, Yang X, Liu S (2017) Recombinant Newcastle disease virus expressing the infectious bronchitis virus S1 gene protects chickens against Newcastle disease virus and infectious bronchitis virus challenge. Vaccine 35:2435–2442

    Article  CAS  PubMed  Google Scholar 

  74. Zhao W, Spatz S, Zhang Z, Wen G, Garcia M, Zsak L, Yu Q (2014) Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges. J Virol 88:8397–8406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Monika Koul and Dr. Nitin Chaudhary for proofreading the manuscript. We want to thank Dr. Arnab Sen, ICAR NEH, Meghalaya, for providing pig serum samples. The NDV research work was supported by the IIT Guwahati Internal Support Fund and the Department of Science and Technology (IFA-12-LSBM-34). The CSFV work was supported by the Department of Biotechnology (BT/562/NE/U-Excel/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Patricia Aguilar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, V., Kekungu, P. et al. Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: a recombinant Newcastle disease virus approach. Arch Virol 164, 3007–3017 (2019). https://doi.org/10.1007/s00705-019-04425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04425-4

Navigation