Skip to main content
Log in

High-degree and broad-spectrum resistance mediated by a combination of NIb siRNA and miRNA suppresses replication of necrotic and common strains of potato virus Y

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In plants, viral replication can be inhibited through gene silencing, which is mediated by short interfering RNA (siRNA) or microRNA (miRNA). However, under natural conditions, viruses are extremely susceptible to mutations that may decrease the efficiency of cleavage of these small RNAs (sRNAs). Therefore, a single sRNA may not provide a sufficient degree of viral resistance to transgenic plants. Potato virus Y necrotic strain (PVYN) and Potato virus Y common strain (PVYO) are the two major PVY strains that cause systemic necrosis and mottling, respectively, in tobacco. In this study, we designed specific siRNAs and miRNAs to target two regions of the PVYO replicase gene (NIb). Eight plant expression vectors containing one or two sRNAs were constructed. Luciferase activity assays showed that the designed sRNAs successfully cleaved the NIb gene of PVYO and PVYN, and the vector carrying a combined siRNA- and miRNA-based short hairpin RNA (shRNA) demonstrated the strongest inhibitory effect. These effects were confirmed through the acquisition of PVYO and PVYN resistance in transgenic sRNA-expressing Nicotiana tabacum plants. This phenomenon could be related to a plant defense mechanism in which siRNA and miRNA pathways are complementary and interact to achieve gene silencing. Furthermore, there is a tendency for the homologous small RNA sequences (PVYO) to be more effective in conferring resistance than those with imperfect homology (PVYN). Overall, these findings confirm that the use of a combined siRNA- and miRNA-based shRNAs is a promising approach for introducing viral resistance to plants through genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitter N, Zhai Y, Bai AX, Chua K, Eid S, Constantin M, Mitchell R, Pappu HR (2016) Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus Res 211:151–158

    Article  CAS  PubMed  Google Scholar 

  2. Agius C, Eamens AL, Millar AA, Watson JM, Wang MB (2012) RNA silencing and antiviral defense in plants. Methods Mol Biol 894:17–38

    Article  CAS  PubMed  Google Scholar 

  3. Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6(3):206–220

    Article  CAS  PubMed  Google Scholar 

  4. Fowler DK, Williams C, Gerritsen AT, Washbourne P (2016) Improved knockdown from artificial microRNAs in an enhanced miR-155 backbone: a designer’s guide to potent multi-target RNAi. Nucleic Acids Res 44(5):e48

    Article  CAS  PubMed  Google Scholar 

  5. Baulcombe D (2004) RNA silencing in plants. Nature 431(7006):356–363

    Article  CAS  PubMed  Google Scholar 

  6. Duan CG, Wang CH, Guo HS (2012) Application of RNA silencing to plant disease resistance. Silence 3(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high throughout gene silencing in plants. Plant J 27(6):581–590

    Article  CAS  PubMed  Google Scholar 

  8. Fahim M, Ayala-Navarrete L, Millar AA, Larkin PJ (2010) Hairpin RNA derived from viral NIa gene confer immunity wheat streak mosaic virus infection in transgenic wheat plants. Plant Biotechnol J 8(7):821–834

    Article  CAS  PubMed  Google Scholar 

  9. Ramesh SV, Mishra AK, Praveen S (2007) Hairpin RNA mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides 17(2):251–257

    Article  CAS  PubMed  Google Scholar 

  10. Liu D, Liu L, Wang LZ, Duan SZ, Song YN, Qu M, Gao N, Wu JX, Zhang HH, Wu H, Yu B, Yu XH (2018) Therapeutic effects of mesenchymal stem cells combined with short hairpin RNA on liver injury induced by hepatitis B virus infection. Mol Med Rep 17(1):1731–1741

    CAS  PubMed  Google Scholar 

  11. Zhang L, Xie X, Song Y, Jiang F, Zhu C, Wen F (2013) Viral resistance mediated by shRNA depends on the sequence similarity and mismatched sites between the target sequence and siRNA. Biol Plant 57(3):547–554

    Article  CAS  Google Scholar 

  12. Oh JN, Choi KH, Lee CK (2018) Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs. Asian-Australas J Anim Sci 31(4):498

    Article  Google Scholar 

  13. Aslam U, Tabassum B, Nasir IA, Khan A, Husnain T (2018) A virus-derived short hairpin RNA confers resistance against sugarcane mosaic virus in transgenic sugarcane. Transgenic Res 27(2):203–210

    CAS  PubMed  Google Scholar 

  14. Tabassum B, Nasir IA, Husnain T (2011) Potato virus Y mRNA expression knockdown mediated by siRNAs in cultured mammalian cell line. Virol Sin 26(2):105–113

    Article  CAS  PubMed  Google Scholar 

  15. Duan CG, Wang CH, Fang RX, Guo HS (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82(22):11084–11095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Specific effects of microRNAs on the plant transcriptome. Plant Cell 18(5):1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24(11):1420–1428

    Article  CAS  PubMed  Google Scholar 

  18. Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81(12):6690–6699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song YZ, Han QJ, Jiang F, Sun RZ, Fan ZH, Zhu CX, Wen FJ (2014) Effects of the sequence characteristics of miRNAs on multi-viral resistance mediated by single amiRNAs in transgenic tobacco. Plant Physiol Biochem 77:90–98

    Article  CAS  PubMed  Google Scholar 

  20. Simón-Mateo C, García JA (2006) MicroRNA-guided processing impairs plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol 80(5):2429–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ai T, Zhang L, Gao Z, Zhu CX, Guo X (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol 13(2):304–316

    Article  CAS  PubMed  Google Scholar 

  22. ter Brake O, Konstantinova P, Ceylan M, Berkhout B (2006) Silencing of HIV-1 with RNA interference: a multiple shRNA approach. Mol Ther 14(6):883–892

    Article  CAS  PubMed  Google Scholar 

  23. Shan ZX, Lin QX, Yang M, Deng CY, Kuang SJ, Zhou ZL, Xiao DZ, Liu XY, Lin SG, Yu XY (2009) A quick and efficient approach for gene silencing by using triple putative microRNA-based short hairpin RNAs. Mol Cell Biochem 323(1–2):81–89

    Article  CAS  PubMed  Google Scholar 

  24. Urusov F, Glazkova D, Omelchenko D, Boqoslovskaya E, Tsyqanova G, Kersting K, Shipulin G, Pokrovsky V (2018) Optimization of polycistronic anti-CCR5 artificial microRNA leads to improved accuracy of its lentiviral vector transfer and more potent inhibition of HIV-1 in CD4+ T-cells. Cells 7(2):10

    Article  PubMed Central  Google Scholar 

  25. Choi JG, Bharaj P, Abraham S, Ma H, Yi G, Ye C, Dang Y, Manjunath N, Wu H, Shankar P (2015) Multiplexing seven miRNA-based shRNAs to suppress HIV replication. Mol Ther 23(2):310–320

    Article  CAS  PubMed  Google Scholar 

  26. Balme-Sinibaldi V, Tribodet M, Croizat F, Lefeuvre P, Kerlan C, Jacquot E (2006) Improvement of Potato virus Y (PVY) detection and quantitation using PVY(N)- and PVY(O)-specific real-time RT-PCR assays. J Virol Methods 134(1–2):261–266

    Article  CAS  PubMed  Google Scholar 

  27. Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12(9):938–954

    Article  CAS  PubMed  Google Scholar 

  28. Quenouille J, Vassilakos N, Moury B (2013) Potato virus Y: a major crop pathogen that has provided major insights into the evolution of viral pathogenicity. Mol Plant Pathol 14(5):439–452

    Article  CAS  PubMed  Google Scholar 

  29. Janzac B, Montarry J, Palloix A, Navaud O, Moury B (2010) A point mutation in the polymerase of Potato virus Y confers virulence toward the Pvr4 resistance of pepper and a high competitiveness cost in susceptible cultivar. Mol Plant Microbe Interact 23(6):823–830

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Liu J, Xu L, Jiang F, Xie X, Zhu C, Wen F (2010) Inhibiting virus infection by RNA interference of the eight functional genes of the Potato virus Y genome. J Phytopathol 158(11–12):776–784

    Article  CAS  Google Scholar 

  31. Xu L, Song Y, Zhu J, Guo X, Zhu C, Wen F (2009) Conserved sequences of replicase gene-mediated resistance to potyvirus through RNA silencing. J Plant Biol 52(6):550–559

    Article  CAS  Google Scholar 

  32. Gallois P, Marinho P (1995) Leaf disk transformation using Agrobacterium tumefaciens expression of heterologous genes in tobacco. Methods Mol Biol 49:39–48

    CAS  PubMed  Google Scholar 

  33. Jan FJ, Fagoaga C, Pang SZ, Gonsalves DA (2000) Single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology dependent gene silencing. J Gen Virol 81(8):2103–2109

    Article  CAS  PubMed  Google Scholar 

  34. Lindbo JA, Dougherty WG (1992) Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189(2):725–733

    Article  CAS  PubMed  Google Scholar 

  35. Helliwell C, Waterhouse P, Lu R (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30(4):289–295

    Article  CAS  PubMed  Google Scholar 

  36. Arif M, Azhar U, Arshad M, Zafar Y, Mansoor S, Asad S (2012) Engineering broad-spectrum resistance against RNA viruses in potato. Transgenic Res 21(2):303–311

    Article  CAS  PubMed  Google Scholar 

  37. Guo Y, Jia MA, Yang Y, Zhan L, Cheng X, Cai J, Zhang J, Yang J, Liu T, Fu Q, Zhao J, Shamsi IH (2017) Integrated analysis of tobacco miRNA and mRNA expression profiles under PVY infection provides insight into tobacco–PVY interactions. Sci Rep 7(1):4895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bucher E, Lohuis D, van Poppel PM, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87(12):3697–3701

    Article  CAS  PubMed  Google Scholar 

  39. Zhu CX, Song YZ, Yin GH, Wen FJ (2009) Induction of RNA-mediated multiple virus resistance to Potato virus Y, Tobacco mosaic virus and Cucumber mosaic virus. J Phytopathol 157(2):101–107

    Article  CAS  Google Scholar 

  40. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some micro-RNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  41. Lin SS, Wu HW, Elena SF, Chen KC, Niu QW, Yeh SD, Chen CC, Chua NH (2009) Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. Plos Pathog 5(2):e1000312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shan ZX, Lin QX, Deng CY, Li XY, Huang W, Tan H, Fu Y, Yang M, Yu XY (2009) An efficient method to enhance gene silencing by using precursor microRNA designed small hairpin RNAs. Mol Biol Rep 36(6):1483–1489

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (Grant no. 31272113) and Funds of Shangdong ‘Double Tops’ Program (Grant no. SYL2017YSTD01). We would like to thank Editage (http://www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

RY and CC performed the main experiments and edited the paper, HL and SZ participated in experimental design, WC, CC, and RY were involved in executing the study, and YS and CZ guided the execution of the study and revised the paper.

Corresponding authors

Correspondence to Yunzhi Song or Changxiang Zhu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

No studies involving human participants or animals performed by any of the authors are described in this article.

Additional information

Handling Editor: Ralf Georg Dietzgen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, R., Chen, C., Cao, W. et al. High-degree and broad-spectrum resistance mediated by a combination of NIb siRNA and miRNA suppresses replication of necrotic and common strains of potato virus Y. Arch Virol 163, 3073–3081 (2018). https://doi.org/10.1007/s00705-018-3969-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3969-5

Navigation