Skip to main content
Log in

Two alphapartitiviruses co-infecting a single isolate of the plant pathogenic fungus Rhizoctonia solani

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Seven dsRNA segments were detected from a single Rhizoctonia solani strain HG81. From the full-length cDNA sequences of four smaller dsRNA segments, the genomes of two related partitiviruses, designated as Rhizoctonia solani partitivirus 3 (RsPV3) and RsPV4, were determined. The genomes of RsPV3 and RsPV4 are both composed of two separate dsRNA segments, with each segment possessing a single open reading frame (ORF). ORF1 from RsPV3 and RsPV4 encodes a putative RNA-dependent RNA polymerase, while ORF2 of RsPV3 and RsPV4 encodes a putative capsid protein. RsPV3 and RsPV4 share high sequence identity with viruses classified within the genus Alphapartitivirus, family Partitiviridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Lee FN, Rush MC (1983) Rice sheath blight: a major rice disease. Plant Dis 67:829–832

    Article  Google Scholar 

  2. Savary S, Willocquet L, Elazegui FA, Castilla NP, Teng PS (2000) Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Dis 84:357–369

    Article  Google Scholar 

  3. Yellareddygari SKR, Reddy MS, Kloepper JW, Lawrence KS, Fadamiro H (2014) Rice sheath blight: a review of disease and pathogen management approaches. J Plant Pathol Microb 5:4

    Google Scholar 

  4. Pearson MN, Beever RE, Boine B, Arthur K (2009) Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol Plant Pathol 10(1):115–128

    Article  CAS  PubMed  Google Scholar 

  5. Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479:356–368

    Article  PubMed  Google Scholar 

  6. Xie J, Jiang D (2014) New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu Rev Phytopathol 52:45–68

    Article  CAS  PubMed  Google Scholar 

  7. Bharathan N, Tavantzis SM (1990) Genetic diversity of double-stranded RNA from Rhizoctonia solani. Genetics 80(7):631–635

    CAS  Google Scholar 

  8. Kim SO, Chung HS, Lee YH (1996) Double-stranded RNAs in Korean isolates of Rhizoctonia solani AG4. FEMS Microbiol Lett 141(2–3):203–206

    Article  CAS  PubMed  Google Scholar 

  9. Bharathan N, Saso H, Gudipati L, Bharathan S, Whited K, Anthony K (2005) Double-stranded RNA: distribution and analysis among isolates of Rhizoctonia solani AG-2 to -13. Plant Pathol 54:196–203

    Article  CAS  Google Scholar 

  10. Das S, Falloon RE, Stewart A, Pitman AR (2014) Molecular characterisation of an endornavirus from Rhizoctonia solani AG-3PT infecting potato. Fungal Biol 118(11):924–934

    Article  CAS  PubMed  Google Scholar 

  11. Domingo DD, Bawingan PA, Bharathan S, Bharathan N (2014) Molecular screening and characterization of dsRNA from wild-type and mutant strains of Rhizoctonia solani Kuhn isolates. Philippine J Sci 143(1):61–72

    Google Scholar 

  12. Castanho B, Butler EE (1978) Rhizoctonia decline: studies on hypovirulence and potential use in biological control. Phytopathology 68:1511–1514

    Article  Google Scholar 

  13. Castanho B, Butler EE, Shepherd RJ (1978) The association of double-stranded RNA with Rhizoctonia decline. Phytopathology 68:1515–1519

    Article  CAS  Google Scholar 

  14. Finkler A, Koltin Y, Barash I, Sneh B, Pozniak D (1985) Isolation of a virus from virulent strains of Rhizoctonia solani. J Gen Virol 66:1221–1232

    Article  CAS  Google Scholar 

  15. Bharathan N, Tavantzis SM (1991) Assessment of genetic relatedness among double-stranded RNAs from isolates of Rhizoctonia solani from diverse geographic origins. Phytopathology 81:411–415

    Article  CAS  Google Scholar 

  16. Jian J, Lakshman DK, Tavantzis SM (1998) A virulence-associated, 6.4-kb, double-stranded RNA from Rhizoctonia solani is phylogenetically related to plant bromoviruses and electron transport enzymes. Mol Plant Microbe Interact 11(7):601–609

    Article  CAS  PubMed  Google Scholar 

  17. Lakshman DK, Jian J, Tavantzis SM (1998) A double-stranded RNA element from a hypovirulent strain of Rhizoctonia solani occurs in DNA form and is genetically related to the pentafunctional AROM protein of the shikimate pathway. Proc Natl Acad Sci USA 95(11):6425–6429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jian J, Lakshman DK, Tavantzis SM (1997) Association of distinct double-stranded RNAs with enhanced or diminished virulence in Rhizoctonia solani infecting potato. Mol Plant Microbe Interact 10:1002–1009

    Article  CAS  Google Scholar 

  19. Charlton ND, Cubeta MA (2007) Transmission of the M2 double-stranded RNA in Rhizoctonia solani anastomosis group 3 (AG-3). Mycologia 99(6):859–867

    Article  CAS  PubMed  Google Scholar 

  20. Liu C, Lakshman DK, Tavantzis SM (2003) Quinic acid induces hypovirulence and expression of a hypovirulence-associated double-stranded RNA in Rhizoctonia solani. Curr Genet 43(2):103–111

    CAS  PubMed  Google Scholar 

  21. Strauss EE, Lakshman DK, Tavantzis SM (2000) Molecular characterization of the genome of a partitivirus from the basidiomycete Rhizoctonia solani. J Gen Virol 81(Pt 2):549–555

    Article  CAS  PubMed  Google Scholar 

  22. Zheng L, Zhang M, Chen Q, Zhu M, Zhou E (2014) A novel mycovirus closely related to viruses in the genus Alphapartitivirus confers hypovirulence in the phytopathogenic fungus Rhizoctonia solani. Virology 456–457:220–226

    Article  PubMed  Google Scholar 

  23. Das S, Falloon RE, Stewart A, Pitman AR (2016) Novel mitoviruses in Rhizoctonia solani AG-3PT infecting potato. Fungal Biol 120(3):338–350

    Article  CAS  PubMed  Google Scholar 

  24. Zheng L, Liu H, Zhang M, Cao X, Zhou E (2013) The complete genomic sequence of a novel mycovirus from Rhizoctonia solani AG-1 IA strain B275. Arch Virol 158(7):1609–1612

    Article  CAS  PubMed  Google Scholar 

  25. Zhong J, Chen C, Gao B (2015) Genome sequence of a novel mycovirus of Rhizoctonia solani, a plant pathogenic fungus. Virus Genes 51(1):167–170

    Article  CAS  PubMed  Google Scholar 

  26. Xiao X, Cheng J, Tang J, Fu Y, Jiang D, Baker TS, Ghabrial SA, Xie J (2014) A novel partitivirus that confers hypovirulence on plant pathogenic fungi. J Virol 88(17):10120–10133

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nerva L, Varese GC, Falk BW, Turina M (2017) Mycoviruses of an endophytic fungus can replicate in plant cells: evolutionary implications. Sci Rep 7(1):1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bhatti MF, Jamal A, Petrou MA, Cairns TC, Bignell EM, Coutts RH (2011) The effects of dsRNA mycoviruses on growth and murine virulence of Aspergillus fumigatus. Fungal Genet Biol 48:1071–1075

    Article  CAS  PubMed  Google Scholar 

  30. Magae Y, Sunagawa M (2010) Characterization of a mycovirus associated with the brown discoloration of edible mushroom, Flammulina velutipes. Virol J 7:342

    PubMed  PubMed Central  Google Scholar 

  31. Chiba S, Lin YH, Kondo H, Kanematsu S, Suzuki N (2013) Effects of defective interfering RNA on symptom induction by, and replication of, a novel partitivirus from a phytopathogenic fungus, Rosellinia necatrix. J Virol 87:2330–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sasaki A, Nakamura H, Suzuki N, Kanematsu S (2016) Characterization of a new megabirnavirus that confers hypovirulence with the aid of a co-infecting partitivirus to the host fungus, Rosellinia necatrix. Virus Res 219:73–82

    Article  CAS  PubMed  Google Scholar 

  33. Nerva L, Silvestri A, Ciuffo M, Palmano S, Varese GC, Turina M (2017) Transmission of Penicillium aurantiogriseum partiti-like virus 1 to a new fungal host (Cryphonectria parasitica) confers higher resistance to salinity and reveals adaptive genomic changes. Environ Microbiol. https://doi.org/10.1111/1462-2920.13894

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiatao Xie.

Ethics declarations

Funding

This research was supported by the Fundamental Research Funds for the Central Universities (2662017JC004), National Key Research and Development program of China (2017YFD0201100).

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Massimo Turina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, R., Zhang, Y., Tang, Q. et al. Two alphapartitiviruses co-infecting a single isolate of the plant pathogenic fungus Rhizoctonia solani . Arch Virol 163, 515–520 (2018). https://doi.org/10.1007/s00705-017-3627-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3627-3

Keywords

Navigation