Skip to main content
Log in

Genetic analysis of three porcine bocaparvoviruses and identification of a natural recombinant breakpoint in NS1

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In this study, we obtained the whole genomes of three porcine bocaparvovirus (PBoV) strains (GD6, GD10, and GD23) by polymerase chain reaction. Sequence analysis showed that all three field strains belonged to PBoV group 3 (G3). The phylogenetic trees based on NS1, NP1, and VP1 differed to the extent that these PBoVs were potentially more closely related to bocaparvoviruses known to infect other animals than to other PBoVs. GD6, GD10, and GD23 all included the conserved sequences YLGPF and HDXXY, with known phospholipase A2 activity. Using recombination-detection software we identified a natural recombinant breakpoint in the NS1 region of PBoV G3. The results of this study will further the epidemiological characterization of PBoVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Adams MJ, Lefkowitz EJ, King AM, Carstens EB (2014) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch Virol 159(10):2831–2841

    Article  CAS  PubMed  Google Scholar 

  2. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B (2005) Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA 102(36):12891–12896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blomstrom AL, Belak S, Fossum C, McKillen J, Allan G, Wallgren P, Berg M (2009) Detection of a novel porcine boca-like virus in the background of porcine circovirus type 2 induced postweaning multisystemic wasting syndrome. Virus Res 146(1–2):125–129

    Article  PubMed  Google Scholar 

  4. Zhou F, Sun H, Wang Y (2014) Porcine bocavirus: achievements in the past five years. Viruses 6(12):4946–4960

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cheng WX, Li JS, Huang CP, Yao DP, Liu N, Cui SX, Jin Y, Duan ZJ (2010) Identification and nearly full-length genome characterization of novel porcine bocaviruses. PloS One 5(10):e13583

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lau SK, Woo PC, Yip CC, Li KS, Fu CT, Huang Y, Chan KH, Yuen KY (2011) Co-existence of multiple strains of two novel porcine bocaviruses in the same pig, a previously undescribed phenomenon in members of the family Parvoviridae, and evidence for inter-and intra-host genetic diversity and recombination. J Gen Virol 92(Pt 9):2047–2059

    Article  CAS  PubMed  Google Scholar 

  7. Yang WZ, Yu JM, Li JS, Cheng WX, Huang CP, Duan ZJ (2012) Genome characterization of a novel porcine bocavirus. Arch Virol 157(11):2125–2132

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Q, Hu R, Tang X, Wu C, He Q, Zhao Z, Chen H, Wu B (2013) Occurrence and investigation of enteric viral infections in pigs with diarrhea in China. Arch Virol 158(8):1631–1636

    Article  CAS  PubMed  Google Scholar 

  9. Wang E, Liu W, Yang B, Liu J, Ma X, Lan X (2014) Complete sequence and phylogenetic analysis of a porcine bocavirus strain swBoV CH437. Virus Genes 48(2):387–390

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Q, Zhang C, Gao M, He X, Diao Y, Goyal SM, Mor SK, Huang J (2015) Evolutionary, epidemiological, demographical, and geographical dissection of porcine bocavirus in China and America. Virus Res 195:13–24

    Article  CAS  PubMed  Google Scholar 

  11. Zheng X, Liu G, Opriessnig T, Wang Z, Yang Z, Jiang Y (2016) Development and validation of a multiplex conventional PCR assay for simultaneous detection and grouping of porcine bocaviruses. J Virol Methods 236:164–169

    Article  CAS  PubMed  Google Scholar 

  12. Sun Y, Chen AY, Cheng F, Guan W, Johnson FB, Qiu J (2009) Molecular characterization of infectious clones of the minute virus of canines reveals unique features of bocaviruses. J Virol 83(8):3956–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anderson S, Momoeda M, Kawase M, Kajigaya S, Young NS (1995) Peptides derived from the unique region of B19 parvovirus minor capsid protein elicit neutralizing antibodies in rabbits. Virology 206(1):626–632

    Article  CAS  PubMed  Google Scholar 

  14. Leisi R, Ruprecht N, Kempf C, Ros C (2013) Parvovirus B19 uptake is a highly selective process controlled byVP1u, a novel determinant of viral tropism. J Virol 87(24):13161–13167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leisi R, Di Tommaso C, Kempf C, Ros C (2016) The receptor-binding domain in the VP1u region of parvovirus B19. Viruses 8(3):61

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chiu CC, Shi YF, Yang JJ, Hsiao YC, Tzang BS, Hsu TC (2014) Effects of human parvovirus B19 and bocavirus VP1 unique region on tight junction of human airway epithelial A549 cells. PloS One 9(9):e107970

    Article  PubMed  PubMed Central  Google Scholar 

  17. Deng X, Dong Y, Yi Q, Huang Y, Zhao D, Yang Y, Tijssen P, Qiu J, Liu K, Li Y (2013) The determinants for the enzyme activity of human parvovirus B19 phospholipase A2 (PLA2) and its influence on cultured cells. PloS One 8(4):e61440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu X, Wang X, Ni B, Shen H, Wang H, Zhang X, Chen S, Shao S, Zhang W (2011) Recombination analysis based on the complete genome of bocavirus. Virol J 8:182

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kapoor A, Simmonds P, Slikas E, Li L, Bodhidatta L, Sethabutr O, Triki H, Bahri O, Oderinde BS, Baba MM, Bukbuk DN, Besser J, Bartkus J, Delwart E (2010) Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. J Infect Dis 201(11):1633–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Csagola A, Lorincz M, Cadar D, Tombacz K, Biksi I, Tuboly T (2012) Detection, prevalence and analysis of emerging porcine parvovirus infections. Arch Virol 157(6):1003–1010

    Article  CAS  PubMed  Google Scholar 

  21. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1(1):vev003

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhai S, Yue C, Wei Z, Long J, Ran D, Lin T, Deng Y, Huang L, Sun L, Zheng H, Gao F, Zheng H, Chen S, Yuan S (2010) High prevalence of a novel porcine bocavirus in weanling piglets with respiratory tract symptoms in China. Arch Virol 155(8):1313–1317

    Article  CAS  PubMed  Google Scholar 

  23. Choi MG, Park SJ, Nguyen VG, Chung HC, Kim AR, Park BK (2014) Molecular detection and genetic analysis of porcine bocavirus in Korean domestic swine herds. Arch Virol 159(6):1487–1492

    Article  CAS  PubMed  Google Scholar 

  24. Pfankuche VM, Bodewes R, Hahn K, Puff C, Beineke A, Habierski A, Osterhaus AD, Baumgartner W (2016) Porcine bocavirus infection associated with encephalomyelitis in a Pig, Germany. Emerg Infect Dis 22(7):1310–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the Huizhou City Science and Technology Bureau (2016G0414029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ru Chen or Ai-Dong Qian.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Zhenhai Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 22 kb)

705_2017_3606_MOESM2_ESM.pdf

Figure S1: Phylogenetic analysis of PBoVs GD6, GD10, and GD23 when compared with other BoVs, based on ORF2. Figure S2: Phylogenetic analysis of PBoVs GD6, GD10, and GD23 when compared with other BoVs, based on ORF3. Figure S3: The putative phospholipase A2 motif in BoVs. The HDXXY and YLGPF motifs of PLA2 are indicated by a blue grid (PDF 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xu, J., Zhu, SK. et al. Genetic analysis of three porcine bocaparvoviruses and identification of a natural recombinant breakpoint in NS1. Arch Virol 163, 707–712 (2018). https://doi.org/10.1007/s00705-017-3606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3606-8

Navigation