Skip to main content

Advertisement

Log in

A rabies virus vampire bat variant shows increased neuroinvasiveness in mice when compared to a carnivore variant

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Rabies is one of the most important zoonotic diseases and is caused by several rabies virus (RABV) variants. These variants can exhibit differences in neurovirulence, and few studies have attempted to evaluate the neuroinvasiveness of variants derived from vampire bats and wild carnivores. The aim of this study was to evaluate the neuropathogenesis of infection with two Brazilian RABV street variants (variant 3 and crab-eating fox) in mice. BALB/c mice were inoculated with RABV through the footpad, with the 50% mouse lethal dose (LD50) determined by intracranial inoculation. The morbidity of rabies in mice infected with variant 3 and the crab-eating fox strain was 100% and 50%, respectively, with an incubation period of 7 and 6 days post-inoculation (dpi), respectively. The clinical disease in mice was similar with both strains, and it was characterized initially by weight loss, ruffled fur, hunched posture, and hind limb paralysis progressing to quadriplegia and recumbency at 9 to 12 dpi. Histological lesions within the central nervous system (CNS) characterized by nonsuppurative encephalomyelitis with neuronal degeneration and necrosis were observed in mice infected with variant 3 and those infected with the crab-eating fox variant. However, lesions and the presence of RABV antigen, were more widespread within the CNS of variant-3-infected mice, whereas in crab-eating fox-variant-infected mice, RABV antigens were more restricted to caudal areas of the CNS, such as the spinal cord and brainstem. In conclusion, the results shown here demonstrate that the RABV vampire bat strain (variant 3) has a higher potential for neuroinvasiveness than the carnivore variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rupprecht CE, Hanlon CA, Hemachudha T (2002) Rabies re-examined. Lancet Infect Dis 2(6):327–343. doi:10.1016/S1473-3099(02)00287-6

    Article  PubMed  Google Scholar 

  2. Diaz AM, Papo S, Rodriguez A, Smith JS (1994) Antigenic analysis of rabies-virus isolates from Latin America and the Caribbean. Zentralbl Veterinarmed B 41(3):153–160. doi:10.1111/j.1439-0450.1994.tb00219.x

    CAS  PubMed  Google Scholar 

  3. Favoretto SR, de Mattos CC, Morais NB, Alves Araújo FA, de Mattos CA (2001) Rabies in marmosets (Callithrix jacchus), Ceará, Brazil. Emerg Infect Dis 7(6):1062–1065. doi:10.3201/eid0706.010630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Favoretto SR, Carrieri ML, Cunha EM, Aguiar EA, Silva LH, Sodre MM, Souza MC, Kotait I (2002) Antigenic typing of Brazilian rabies virus samples isolated from animals and humans, 1989–2000. Rev Inst Med Trop Sao Paulo 44(2):91–95. doi:10.1590/S0036-46652002000200007

    Article  PubMed  Google Scholar 

  5. Carnieli P, WeO Fahl, Castilho JG, ReN Oliveira, Macedo CI, Durymanova E, Jorge RS, Morato RG, Spíndola RO, Machado LM, Ungar de Sá JE, Carrieri ML, Kotait I (2008) Characterization of rabies virus isolated from canids and identification of the main wild canid host in Northeastern Brazil. Virus Res 131(1):33–46. doi:10.1016/j.virusres.2007.08.007

    Article  CAS  PubMed  Google Scholar 

  6. Oliveira R, de Souza S, Lobo R, Castilho J, Macedo C, Carnieli P, Fahl W, Achkar S, Scheffer K, Kotait I, Carrieri M, Brandao P (2010) Rabies virus in insectivorous bats: implications of the diversity of the nucleoprotein and glycoprotein genes for molecular epidemiology. Virology 405(2):352–360. doi:10.1016/j.virol.2010.05.030

    Article  CAS  Google Scholar 

  7. Charlton KM (1984) Rabies: spongiform lesions in the brain. Acta Neuropathol 63(3):198–202. doi:10.1007/BF00685245

    Article  CAS  PubMed  Google Scholar 

  8. Pedroso P, Colodel E, Pescador C, Arruda L, Driemeier D (2009) Clinical and pathological aspects in cattle affected by rabies with special reference to the rabies antigen mapping by immunohistochemistry. Pesq Vet Bras 29(11):899–904. doi:10.1590/S0100-736X2009001100006

    Article  Google Scholar 

  9. Abreu CC, Nakayama PA, Nogueira CI, Mesquita LP, Lopes PF, Wouters F, Varaschin MS, Bezerra PS (2014) Histopathology and immunohistochemistry of tissues outside central nervous system in bovine rabies. J Neurovirol 20(4):388–397. doi:10.1007/s13365-014-0255-5

    Article  CAS  PubMed  Google Scholar 

  10. Sugamata M, Miyazawa M, Mori S, Spangrude GJ, Ewalt LC, Lodmell DL (1992) Paralysis of street rabies virus-infected mice is dependent on T lymphocytes. J Virol 66(2):1252–1260

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Stein LT, Rech RR, Harrison L, Brown CC (2010) Immunohistochemical study of rabies virus within the central nervous system of domestic and wildlife species. Vet Pathol 47(4):630–633. doi:10.1177/0300985810370013

    Article  CAS  PubMed  Google Scholar 

  12. Kojima D, Park CH, Satoh Y, Inoue S, Noguchi A, Oyamada T (2009) Pathology of the spinal cord of C57BL/6J mice infected with rabies virus (CVS-11 strain). J Vet Med Sci 71(3):319–324. doi:10.1292/jvms.71.319

    Article  PubMed  Google Scholar 

  13. Park CH, Kondo M, Inoue S, Noguchi A, Oyamada T, Yoshikawa H, Yamada A (2006) The histopathogenesis of paralytic rabies in 6-week-old C57BL/6J mice following inoculation of the CVS-11 strain into the right triceps surae muscle. J Vet Med Sci 68(6):589–595. doi:10.1292/jvms.68.589

    Article  PubMed  Google Scholar 

  14. Hicks DJ, Nuñez A, Healy DM, Brookes SM, Johnson N, Fooks AR (2009) Comparative pathological study of the murine brain after experimental infection with classical rabies virus and European bat lyssaviruses. J Comp Pathol 140(2–3):113–126. doi:10.1016/j.jcpa.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  15. Jackson AC, Reimer DL (1989) Pathogenesis of experimental rabies in mice: an immunohistochemical study. Acta Neuropathol 78(2):159–165

    Article  CAS  PubMed  Google Scholar 

  16. Yan X, Prosniak M, Curtis MT, Weiss ML, Faber M, Dietzschold B, Fu ZF (2001) Silver-haired bat rabies virus variant does not induce apoptosis in the brain of experimentally infected mice. J Neurovirol 7(6):518–527. doi:10.1080/135502801753248105

    Article  CAS  PubMed  Google Scholar 

  17. Cunha E, Nassar A, Lara M, Villalobos E, Sato G, Kobayashi Y, Shoji Y, Itou T, Sakai T, Ito F (2010) Pathogenicity of different rabies virus isolates and protection test in vaccinated mice. Rev Inst Med Trop Sao Paulo 52(5):231–235. doi:10.1590/S0036-46652010000500002

    Article  PubMed  Google Scholar 

  18. Appolinario C, Allendorf S, Vicente A, Ribeiro B, da Fonseca C, Antunes J, Peres M, Kotait I, Carrieri M, Megid J (2015) Fluorescent antibody test, quantitative polymerase chain reaction pattern and clinical aspects of rabies virus strains isolated from main reservoirs in Brazil. Braz J Infect Dis 19(5):479–485. doi:10.1016/j.bjid.2015.06.012

    Article  PubMed  Google Scholar 

  19. Katz I, Fuoco N, Chaves L, Rodrigues A, Ribeiro O, Scheffer K, Asano K (2016) Delayed progression of rabies transmitted by a vampire bat. Arch Virol 161(9):2561–2566. doi:10.1007/s00705-016-2927-3

    Article  CAS  PubMed  Google Scholar 

  20. Reed L, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27(3):493–497. doi:10.1093/oxfordjournals.aje.a118408

    Google Scholar 

  21. Orciari LA, Niezgoda M, Hanlon CA, Shaddock JH, Sanderlin DW, Yager PA, Rupprecht CE (2001) Rapid clearance of SAG-2 rabies virus from dogs after oral vaccination. Vaccine 19(31):4511–4518. doi:10.1016/S0264-410X(01)00186-4

    Article  CAS  PubMed  Google Scholar 

  22. de Souza DN, Carnieli P Jr, Macedo CI, de Novaes Oliveira R, de Carvalho Ruthner Batista HB, Rodrigues AC, Pereira PM, Achkar SM, Vieira LF, Kawai JG (2017) Phylogenetic analysis of rabies virus isolated from canids in North and Northeast Brazil. Arch Virol 162(1):71–77. doi:10.1007/s00705-016-3079-1

    Article  PubMed  Google Scholar 

  23. Jordan WH, Young JK, Hyten MJ, Hall DG (2011) Preparation and analysis of the central nervous system. Toxicol Pathol 39(1):58–65. doi:10.1177/0192623310391480

    Article  PubMed  Google Scholar 

  24. Dean DJ, Abelseth MK, Atanasiu P (1996) The fluorescent antibody test. In: Meslin F-X, Kaplan MM, Koprowski H (eds) Laboratory techniques in rabies, 4th edn. World Health Organization, Geneva, pp 88–95

    Google Scholar 

  25. Candelario-Jalil E, Alvarez D, Merino N, León OS (2003) Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res 47(2):245–253. doi:10.1016/S0168-0102(03)00184-6

    Article  CAS  PubMed  Google Scholar 

  26. Hemachudha T (2005) Human rabies: a disease of complex neuropathogenetic mechanisms and diagnostic challenges. J Neurol Sci 238(2):S23. doi:10.1016/S1474-4422(02)00041-8

    Google Scholar 

  27. Jackson AC (2003) Rabies virus infection: an update. J Neurovirol 9(2):253–258. doi:10.1080/13550280390193975

    Article  PubMed  Google Scholar 

  28. Warrell M, Warrell D (2004) Rabies and other lyssavirus diseases. Lancet 363(9413):959–969. doi:10.1016/S0140-6736(04)15792-9

    Article  CAS  PubMed  Google Scholar 

  29. Davis AD, Jarvis JA, Pouliott CE, Morgan SM, Rudd RJ (2013) Susceptibility and pathogenesis of little brown bats (Myotis lucifugus) to heterologous and homologous rabies viruses. J Virol 87(16):9008–9015. doi:10.1128/JVI.03554-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kojima D, Park CH, Tsujikawa S, Kohara K, Hatai H, Oyamada T, Noguchi A, Inoue S (2010) Lesions of the central nervous system induced by intracerebral inoculation of BALB/c mice with rabies virus (CVS-11). J Vet Med Sci 72(8):1011–1016. doi:10.1292/jvms.09-0550

    Article  PubMed  Google Scholar 

  31. Preuss M, Faber M, Tan G, Bette M, Dietzschold B, Weihe E, Schnell M (2009) Intravenous inoculation of a bat-associated rabies virus causes lethal encephalopathy in mice through invasion of the brain via neurosecretory hypothalamic fibers. Plos Pathog 5(6):e1000485. doi:10.1371/journal.ppat.1000485

    Article  PubMed  PubMed Central  Google Scholar 

  32. Badrane H, Bahloul C, Perrin P, Tordo N (2001) Evidence of two lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J Virol 75(7):3268–3276. doi:10.1128/JVI.75.7.3268-3276.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Appolinario C, Allendorf S, Peres M, Ribeiro B, Fonseca C, Vicente A, Antunes J, Megid J (2016) Profile of cytokines and chemokines triggered by wild-type strains of rabies virus in mice. Am J Trop Med Hyg 94(2):378–383. doi:10.4269/ajtmh.15-0361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rossiter JP, Hsu L, Jackson AC (2009) Selective vulnerability of dorsal root ganglia neurons in experimental rabies after peripheral inoculation of CVS-11 in adult mice. Acta Neuropathol 118(2):249–259. doi:10.1007/s00401-009-0503-6

    Article  PubMed  Google Scholar 

  35. Faber M, Faber ML, Papaneri A, Bette M, Weihe E, Dietzschold B, Schnell MJ (2005) A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J Virol 79(22):14141–14148. doi:10.1128/JVI.79.22.14141-14148.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Sao Paulo Research Foundation (FAPESP), Process number 2015/17807-0. We would like to acknowledge to National Council for Scientific and Technological Development (CNPq) for providing a Master´s Grant to T. H. M. Gamon. We would also like to thank Dr. Mary S. Varaschin for providing the anti-RABV antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enio Mori.

Ethics declarations

Conflict of interest

None of the authors declare any conflict of interest with respect to the publication of this manuscript.

Ethical approval

The experiments involving mice were reviewed and approved by the Ethics Committee for the Use of Animals of the School of Veterinary Medicine and Animal Science, University of São Paulo, and by the Instituto Pasteur Institutional Ethics Committee for Animal Experiments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesquita, L.P., Gamon, T.H.M., Cuevas, S.E.C. et al. A rabies virus vampire bat variant shows increased neuroinvasiveness in mice when compared to a carnivore variant. Arch Virol 162, 3671–3679 (2017). https://doi.org/10.1007/s00705-017-3530-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3530-y

Navigation