Advertisement

Archives of Virology

, Volume 162, Issue 11, pp 3251–3268 | Cite as

Immunological aspects of rabies: a literature review

  • Iana Suly Santos Katz
  • Fernanda Guedes
  • Elaine Raniero Fernandes
  • Sandriana dos Ramos Silva
Review

Abstract

Rabies is a lethal disease caused by the neurotropic virus rabies virus (RABV), and it remains an important public health problem globally. It is known that the host immune response is important for control of viral infection and promoting viral clearance. In this context, it is well documented that, in addition to RABV neutralizing antibody, interferons and cell-mediated immunity also have an important role in preventing the establishment of disease. On the other hand, RABV suppresses host immunity through different mechanisms, for example, direct inhibition of host gene expression, sequestration of pathogen-associated molecular patterns, or modification of cytokine signalling pathways, which hinder the protective host immune responses to RABV infection. Here, we review the immunological aspects of rabies, highlighting innate and adaptive immunity, as well as the host evasion immune mechanisms used by the virus. Finally, we briefly discuss how this knowledge can direct new research and be harnessed for future therapeutic strategies.

Notes

Acknowledgements

We are grateful to Instituto Pasteur for the institutional support and to Samuel da Silva for his assistance with figures.

Compliance with ethical standards

Funding

This study did not receive financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    King, AMQ, Adams, MJ, Carstens, EB, Lefkowitz, EJ (2012) Virus taxonomy. In: Ninth Report of the International Committee on Taxonomy of Viruses Academic Press, San Diego, CAGoogle Scholar
  2. 2.
    Rupprecht CE, Hanlon CA, Hemachudha T (2002) Rabies re-examined. Lancet Infect Dis 2(6):327–343. doi: 10.1016/S1473-3099(02)00287-6 PubMedCrossRefGoogle Scholar
  3. 3.
    OIE-World Organisation for Animal Health (2014) Rabies portal. http://www.oieint/en/animal-health-in-theworld/rabies-portal. Accessed 23 Mar 2017
  4. 4.
    Fooks AR, Banyard AC, Horton DL, Johnson N, McElhinney LM, Jackson AC (2014) Current status of rabies and prospects for elimination. Lancet 384(9951):1389–1399. doi: 10.1016/S0140-6736(13)62707-5 PubMedCrossRefGoogle Scholar
  5. 5.
    Wunner WH, Larson JK, Dietzschold B, Smith CL (1998) The molecular biology of rabies viruses. Rev Infect Dis 10:S771–S784. doi: 10.1016/S1473-3099(02)00287-6 CrossRefGoogle Scholar
  6. 6.
    Tollis M, Dietzschold B, Volia CB, Koprowski H (1991) Immunization of monkeys with rabies ribonucleoprotein (RNP) confers protective immunity against rabies. Vaccine 9(2):134–136. doi: 10.1016/0264-410X(91)90270-G PubMedCrossRefGoogle Scholar
  7. 7.
    Benmansour A, Leblois H, Coulon P, Tuffereau C, GaudinY Flamand A, Lafay F (1991) Antigenicity of rabies virus glycoprotein. J Virol 65(8):4198–4203. doi:0022-538X/91/084198-06$02.00/0PubMedPubMedCentralGoogle Scholar
  8. 8.
    Hanham CA, Zhao F, Tignor GH (1993) Evidence from the anti- idiotypic network that the acetylcholine receptor is a rabies virus receptor. J Virol 67(1):530–542. doi:0022-538X/93/010530-13$02.00/0PubMedPubMedCentralGoogle Scholar
  9. 9.
    Thoulouze MI, Lafage M, Schachner M, Hartmann U, Cremer H, Lafon M (1998) The neural cell adhesion molecule is a receptor for rabies virus. J Virol 72(9):7181–7190. doi:0022-538X/98/$04.0010PubMedPubMedCentralGoogle Scholar
  10. 10.
    Charlton KM, Casey GA (1981) Experimental rabies in skunks: persistence of virus in denervated muscle at the inoculation site Can J. Comp Med 45(4):357–362Google Scholar
  11. 11.
    Yamaoka S, Ito N, Ohka S, Kaneda S, Nakamura H, Agari T, Masatani T, Nakagawa K, Okada K, Okadera K, Mitake H, Fujii T, Sugiyama M (2013) Involvement of the rabies virus phosphoprotein gene in neuroinvasiveness. J Virol 87(22):12327–12338. doi: 10.1128/JVI.02132-13 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Jackson AC (2003) Rabies virus infection: an update. J Neurovirol 9:253–258. doi: 10.1080/13550280390193975 PubMedCrossRefGoogle Scholar
  13. 13.
    Mentis GZ, Gravell M, Hamilton R, Shneider NA, O’Donovan MJ, Schubert M (2006) Transduction of motor neurons and muscle fibers by intramuscular injection of HIV-1-based vectors pseudotyped with select rabies virus glycoproteins. J Neurosci Methods 157:208–217. doi: 10.1061/j.neumeth.2006.04.011 PubMedCrossRefGoogle Scholar
  14. 14.
    Scott TP, Nel LH (2016) Subversion of the immune response by rabies virus. Viruses 8(8):357–362. doi: 10.3390/v8080231 CrossRefGoogle Scholar
  15. 15.
    Coulon P, Derbin C, Kucera P, Lafay F, Prehaud C, Flamand A (1989) Invasion of the peripheral nervous systems of adult mice by the CVS strain of rabies virus and its avirulent derivative AvO1. J Virol 63(8):3550–3554PubMedPubMedCentralGoogle Scholar
  16. 16.
    Velandia-Romero ML, Castellanos JE, Martínez-Gutiérrez M (2013) In vivo differential susceptibility of sensory neurons to rabies virus infection. J Neurovirol 19:367–375. doi: 10.1007/s13365-013-0179-5 CrossRefGoogle Scholar
  17. 17.
    Senba K, Matsumoto T, Yamada K, Shiota S, Iha H, Date Y, Ohtsubo M, Nishizono A (2013) A passive carriage of rabies virus by dendritic cells. Springerplus 2:1–12. doi: 10.1186/2193-1801-2-419 CrossRefGoogle Scholar
  18. 18.
    Lafon M (2011) Evasive strategies in rabies virus infection 2011. Adv Virus Res 79:33–53. doi: 10.1016/B978-0-12-387040-700003-2 PubMedCrossRefGoogle Scholar
  19. 19.
    Kelly RM, Stric PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103(1):63–71. doi: 10.1016/S0165-0270(00)00296-X PubMedCrossRefGoogle Scholar
  20. 20.
    Dietzschold B, Li J, Faber M, Schnell M (2008) Concepts in the pathogenesis of rabies. Future Virol 3(5):481–490. doi: 10.2217/1746079435481 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zhao P, Zhao L, Zhang T, Qi Y, Wang T, Liu K, Wang H, Feng H, Jin H, Qin C, Yang S, Xia X (2011) Innate immune response gene expression profiles in central nervous system of mice infected with rabies virus. Comp Immunol Microbiol Infect Dis 34(6):503–512. doi: 10.1016/j.cimid.2011.09.003 PubMedCrossRefGoogle Scholar
  22. 22.
    Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol 22(2):240–273. doi: 10.1128/CMR00046-08 CrossRefGoogle Scholar
  23. 23.
    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820. doi: 10.1016/j.cell.2010.01.022 PubMedCrossRefGoogle Scholar
  24. 24.
    Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832. doi: 10.1016/jcell201001040 PubMedCrossRefGoogle Scholar
  25. 25.
    Faul EJ, Wanjalla CN, Suthar MS, Gale M, Wirblich C, Schnell MJ (2010) Rabies virus infection induces type I interferon production in an IPS-1 dependent manner while dendritic cell activation relies on IFNAR signaling. PLoS Pathog 6(7):1–15. doi: 10.1371/journal.ppat.1001016 CrossRefGoogle Scholar
  26. 26.
    Li J, Faber M, Dietzschold B, Hooper DC (2011) The role of toll-like receptors in the induction of immune responses during rabies virus infection. Adv Virus Res 79:115–126. doi: 10.1016/B978-0-12-387040-700007-X PubMedCrossRefGoogle Scholar
  27. 27.
    Liu X, Lin H, Tang Q, Li C, Yang S, Wang Z, Wang C, He Q, Cao B, Feng Z, Guan X, Zhu J (2011) Characterization of a human antibody fragment Fab and its calcium phosphate nanoparticles that inhibit rabies virus infection with vaccine. PLoS One 6(5):e19848. doi: 10.1371/journal.pone.0019848 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann NY Acad Sci 1143:1–20. doi: 10.1196/annals.1443.020 PubMedCrossRefGoogle Scholar
  29. 29.
    Takeuchi O, Akira S (2008) MDA5/RIG-I and virus recognition. Curr Opin Immunol 20(1):17–22. doi: 10.1016/j.coi.2008.01.002 PubMedCrossRefGoogle Scholar
  30. 30.
    Prehaud C, Megret F, Lafage M, Lafon M (2005) Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. J Virol 79(20):12893–12904. doi: 10.1128/JVI.79.20.12893-12904.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Jackson AC, Rossiter JP, Lafon M (2006) Expression of Toll-like receptor 3 in the human cerebellar cortex in rabies, herpes simplex encephalitis, and other neurological diseases. J Neurovirol 12(3):229–234. doi: 10.1080/13550280600848399 PubMedCrossRefGoogle Scholar
  32. 32.
    Menager P, Roux P, Mégret F, Bourgeois JP, Le Sourd AM, Danckaert A, Lafage M, Préhaud C, Lafon M (2009) Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri bodies. PLoS Pathog 5(2):e1000315. doi: 10.1371/journal.ppat.1000315 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lawrence TM, Hudacek AW, de Zoete MR, Flavell RA, Schnell MJ (2013) Rabies virus is recognized by the NLRP3 inflammasome and activates interleukin-1β release in murine dendritic cells. J Virol 87(10):5848–5852. doi: 10.1128/JVI.00203-13 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Naze F, Suin V, Lamoral S, Francart A, Brochier B, Roels S, Mast J, Kalai M, Van Gucht S (2013) Infectivity of rabies virus-exposed macrophages. Microbes Infect 15:115–125. doi: 10.1016/j.micinf.2012.10.018 PubMedCrossRefGoogle Scholar
  35. 35.
    Nakamichi K, Inoue S, Takasaki T, Morimoto K, Kurane I (2004) Rabies virus stimulates nitric oxide production and CXC chemokine ligand 10 expression in macrophages through activation of extracellular signal-regulated kinases 1 and 2. J Virol 78(17):9376–9388. doi: 10.1128/JVI.78.17.9376-9388.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lytle AG, Shen S, McGettigan JP (2015) Lymph node but not intradermal injection site macrophages are critical for germinal center formation and antibody responses to rabies vaccination. J Virol 89(5):2842–2848. doi: 10.1128/JVI.03409-14 PubMedCrossRefGoogle Scholar
  37. 37.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811. doi: 10.1146/annurev.immunol.18.1.767 PubMedCrossRefGoogle Scholar
  38. 38.
    Becker Y (2003) Immunological and regulatory functions of uninfected and virus infected immature and mature subtypes of dendritic cells. Virus Genes 26(2):119–130. doi: 10.1023/A:1023427228024 PubMedCrossRefGoogle Scholar
  39. 39.
    Li J, McGettigan JP, Faber M, Schnell MJ, Dietzschold B (2008) Infection of monocytes or immature dendritic cells (DCs) with an attenuated rabies virus results in DC maturation and a strong activation of the NFkappaB signaling pathway. Vaccine 26(3):419–426. doi: 10.1016/j.vaccine.2007.10.072 PubMedCrossRefGoogle Scholar
  40. 40.
    Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997. doi: 10.1126/science.1132505 PubMedCrossRefGoogle Scholar
  41. 41.
    Yang Y, Huang Y, Gnanadurai CW et al (2015) The inability of wild-type rabies virus to activate dendritic cells is dependent on the glycoprotein and correlates with its low level of the denovo-synthesized leader RNA. J Virol 89:2157–2169. doi: 10.1128/JVI02092-14 PubMedCrossRefGoogle Scholar
  42. 42.
    Huang J, Zhang Y, Huang Y, Gnanadurai CW, Zhou M, Zhao L, Fu ZF (2017) The ectodomain of rabies virus glycoprotein determines dendritic cell activation. Antiviral Res 141:1–6. doi: 10.1016/j.antiviral.2017.01.022 PubMedCrossRefGoogle Scholar
  43. 43.
    Moretta A, Marcenaro E, Parolini S, Ferlazzo G, Moretta L (2008) NK cells at the interface between innate and adaptive immunity. Cell Death Differ 15(2):226–233. doi: 10.1038/sj.cdd.4402170 PubMedCrossRefGoogle Scholar
  44. 44.
    Megid J, Kaneno R (2000) Natural killer activity in mice infected with rabies virus and submitted to P acnes (Propionibacterium acnes) as immunomodulatory. Comp Immunol Microbiol Infect Dis 23(2):91–97. doi: 10.1016/S0147-9571(99)00061-2 PubMedCrossRefGoogle Scholar
  45. 45.
    Panpanich T, Hemachudha T, Piyasirisilp S, Manatsathit S, Wilde H, Phanuphak P (1992) Cells with natural killer activity in human rabies. Clin Exp Immunol 89(3):414–418PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Horowitz A, Behrens RH, Okell L, Fooks AR, Riley EM (2010) NK cells as effectors of acquired immune responses: effector CD4+ T cell-dependent activation of NK cells following vaccination. J Immunol 185(5):2808–2818. doi: 10.4049/jimmunol.1000844 PubMedCrossRefGoogle Scholar
  47. 47.
    Chai Q, He WQ, Zhou M, Lu H, Fu ZF (2014) Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. J Virol 88(9):4698–4710. doi: 10.1128/JVI.03149-13 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Chopy D, Detje CN, Lafage M, Kalinke U, Lafon M (2001) The type I interferon response bridles rabies virus infection and reduces pathogenicity. J Neurovirol 17(4):353–367. doi: 10.1007/s13365-011-0041-6 CrossRefGoogle Scholar
  49. 49.
    Chopy D, Pothlichet J, Lafage M, Mégret F, Fiette L, Si-Tahar M, Lafon M (2011) Ambivalent role of the innate immune response in rabies virus pathogenesis. J Virol 85(13):6657–6668. doi: 10.1128/JVI.00302-11 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Solanki A, Radotra BD, Vasishta RK (2009) Correlation of cytokine expression with rabies virus distribution in rabies encephalitis. J Neuroimmunol 217(1–2):85–89. doi: 10.1016/j.jneuroim.2009.09.019 PubMedCrossRefGoogle Scholar
  51. 51.
    Phares TW, Kean RB, Mikheeva T, Hooper DC (2006) Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol 176(12):7666–7675. doi: 10.4049/jimmunol.176.12.7666 PubMedCrossRefGoogle Scholar
  52. 52.
    Pfefferkorn C, Kallfass C, Lienenklaus S, Spanier J, Kalinke U, Rieder M, Conzelmann KK, Michiels T, Staeheli P (2015) Abortively infected astrocytes appear to represent the main source of interferon beta in the virus-infected brain. J Virol 90(4):2031–2038. doi: 10.1128/JVI.02979-15 PubMedCrossRefGoogle Scholar
  53. 53.
    Miao FM, Zhang SF, Wang SC, Liu Y, Zhang F, Hu RL (2017) Comparison of immune responses to attenuated rabies virus and street virus in mouse brain. Arch Virol 162(1):247–257. doi: 10.1007/s00705-016-3081-7 PubMedCrossRefGoogle Scholar
  54. 54.
    Wang ZW, Sarmento L, Wang Y, Li XQ, Dhingra V, Tseggai T, Jiang B, Fu ZF (2005) Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 79(19):12554–12565. doi: 10.1128/JVI.79.19.12554-12565.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhang D, He F, Bi S, Guo H, Zhang B, Wu F, Liang J, Yang Y, Tian Q, Ju C, Fan H, Chen J, Guo X, Luo Y (2016) Genome-wide transcriptional profiling reveals two distinct outcomes in central nervous system infections of rabies virus. Front Microbiol 7:751. doi: 10.3389/fmicb.2016.00751 PubMedPubMedCentralGoogle Scholar
  56. 56.
    Chai Q, She R, Huang Y, Fu ZF (2015) Expression of neuronal CXCL10 induced by rabies virus infection initiates infiltration of inflammatory cells, production of chemokines and cytokines, and enhancement of blood-brain barrier permeability. J Virol 89(1):870–876. doi: 10.1128/JVI.02154-14 PubMedCrossRefGoogle Scholar
  57. 57.
    Gnanadurai CW, Fu ZF (2016) CXCL10 and blood-brain barrier modulation in rabies virus infection. Oncotarget 7(10):10694–10695. doi: 10.18632/oncotarget.7428 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Appolinário CM, Allendorf SD, Peres MG, Ribeiro BD, Fonseca CR, Vicente AF, Antunes JM, Megid J (2016) Profile of cytokines and chemokines triggered by wild-type strains of rabies virus in mice. Am J Trop Med Hyg 94(2):378–383. doi: 10.4269/ajtmh15-0361 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Griffin DE (2003) Immune responses to RNA-virus infections of the CNS. Nat Rev Immunol 3(6):493–502. doi: 10.1038/nri1105 PubMedCrossRefGoogle Scholar
  60. 60.
    Wang CX, Shuaib A (2002) Involvement of inflammatory cytokines in central nervous system injury. Prog Neurobiol 67(2):161–172. doi: 10.1016/S0301-0082(02)00010-2 PubMedCrossRefGoogle Scholar
  61. 61.
    Bailey DM, Roukens R, Knauth M, Kallenberg K, Christ S, Mohr A, Genius J, Storch-Hagenlocher B, Meisel F, McEneny J, Young IS, Steiner T, Hess K, Bärtsch PJ (2006) Free radical-mediated damage to barrier function is not associated with altered brain morphology in high-altitude headache. Cereb Blood Flow Metab 26(1):99–111. doi: 10.1038/sj.jcbfm.9600169 CrossRefGoogle Scholar
  62. 62.
    Bechmann I, Galea I, Perry VH (2007) What is the blood-brain barrier (not)? Trends Immunol 28(1):5–11. doi: 10.1016/j.it.2006.11.007 PubMedCrossRefGoogle Scholar
  63. 63.
    Fabis MJ, Phares TW, Kean RB, Koprowski H, Hooper DC (2008) Blood-brain barrier changes and cell invasion differ between therapeutic immune clearance of neurotrophic virus and CNS autoimmunity. PNAS 105(40):15511–15516. doi: 10.1073/pnas.0807841105 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Liao PH, Hsu YH, Yang HH, Wang MH, Chen LK (2012) Involvement of extraneural tissues and upregulation of inducible nitric oxide synthase after experimental infection with rabies virus in BALB/c mice and LEW/SsN rats. Pathol Int 62(9):619–627. doi: 10.1111/j1440-1827201202846x PubMedCrossRefGoogle Scholar
  65. 65.
    Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F (2015) Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 9:1–13. doi: 10.3389/fncel.2015.00322 CrossRefGoogle Scholar
  66. 66.
    Ubol S, Sukwattanapan C, Maneerat Y (2001) Inducible nitric oxicide synthase inhibition delays death of rabies virus-infected mice. J Med Microbiol 50:238–242. doi: 10.1099/0022-1317-50-3-238 PubMedCrossRefGoogle Scholar
  67. 67.
    Madhu BP, Singh KP, Saminathan M, Singh R, Shivasharanappa N, Sharma AK, Malik YS, Dhama K, Manjunatha V (2016) Role of nitric oxide in the regulation of immune responses during rabies virus infection in mice. Vir dis 27(4):387–399. doi: 10.1007/s13337-016-0343-7 Google Scholar
  68. 68.
    Sugiura NI, Uda A, Inoue S, Kojima D, Hamamoto N, Kaku Y, Okutani A, Noguchi A, Park CH, Yamada A (2011) Gene expression analysis of host innate immune responses in the central nervous system following lethal CVS-11 infection in mice. Jpn J Infect Dis 64(6):463–472PubMedGoogle Scholar
  69. 69.
    Zhao L, Toriumi H, Kuang Y, Chen H, Fu ZF (2009) The roles of chemokines in rabies virus infection: overexpression may not always be beneficial. J Virol 83(22):11808–11818. doi: 10.1128/JVI01346-09 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Kuang Y, Lackay SN, Zhao L, Fu ZF (2009) Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Res 144(1–2):18–26. doi: 10.1016/j.virusres.2009.03.014 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Phares TW, Fabis MJ, Brimer CM, Kean RB, Hooper DC (2007) A peroxynitrite-dependent pathway is responsible for blood-brain barrier permeability changes during a central nervous system inflammatory response: TNF-alpha is neither necessary nor sufficient. J Immunol 178(11):7334–7343. doi: 10.4049/jimmunol.178.11.7334 PubMedCrossRefGoogle Scholar
  72. 72.
    Roy A, Hooper DC (2008) Immune evasion by rabies viruses through the maintenance of blood–brain barrier integrity. J Neurovirol 14:401–411. doi: 10.1080/13550280802235924 PubMedCrossRefGoogle Scholar
  73. 73.
    Roy A, Phares TW, Koprowski H, Hooper DC (2007) Failure to open the blood-brain barrier and deliver immune effectors to central nervous system tissues leads to the lethal outcome of silver-haired bat rabies virus infection. J Virol 81(3):1110–1118. doi: 10.1128/JVI.01964-06 PubMedCrossRefGoogle Scholar
  74. 74.
    Nayak D, Zinselmeyer BH, Corps KN, McGavern DB (2012) In vivo dynamics of innate immune sentinels in the CNS. Intravital 1(2):95–106PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Russo MV, McGavern DB (2015) Immune surveillance of the CNS following infection and injury. Trends Immunol 36(10):637–650. doi: 10.1016/j.it.2015.08.002 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Krummel MF, Bartumeus F, Gérard A (2016) T cell migration, search strategies and mechanisms. Nat Rev Immunol 16(3):193–201. doi: 10.1038/nri201516 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lafon M (2005) Modulation of the immune response in the nervous system by rabies virus. Curr Top Microbiol Immunol 289:239–258PubMedGoogle Scholar
  78. 78.
    Roy A, Hooper DC (2007) Lethal silver-haired bat rabies virus infection can be prevented by opening the blood-brain barrier. J Virol 81(15):7993–7998. doi: 10.1128/JVI.00710-07 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Vuaillat C, Varrin-Doyer M, Bernard A, Sagardoy I, Cavagna S, Chounlamountri I, Lafon M, Giraudon P (2008) High CRMP2 expression in peripheral T lymphocytes is associated with recruitment to the brain during virus-induced neuroinflammation. J Neuroimmunol 193(1–2):38–51. doi: 10.1016/j.jneuroim.2007.09.033 PubMedCrossRefGoogle Scholar
  80. 80.
    Baloul L, Camelo S, Lafon M (2004) Up-regulation of Fas ligand (FasL) in the central nervous system: a mechanism of immune evasion by rabies virus. J Neurovirol 10(6):372–382. doi: 10.1080/13550280490521122 PubMedCrossRefGoogle Scholar
  81. 81.
    Rossiter JP, Hsu L, Jackson AC (2009) Selective vulnerability of dorsal root ganglia neurons in experimental rabies after peripheral inoculation of CVS-11 in adult mice. Acta Neuropathol 118(2):249–259. doi: 10.1007/s00401-009-0503-6 PubMedCrossRefGoogle Scholar
  82. 82.
    Bernardini G, Antonangeli F, Bonanni V, Santni A (2016) Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases. Front Immunol 7:1–9. doi: 10.3389/fimmu.2016.00402 CrossRefGoogle Scholar
  83. 83.
    Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K (1998) Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187(12):2009–2021PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Groom JR, Luster AD (2011) CXCR3 in T cell function. Exp Cell Res 317(5):620–631. doi: 10.1016/jyexcr201012017 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Michlmayr D, McKimmie CS, Pingen M, Haxton B, Mansfield K, Johnson N, Fooks AR, Graham GJ (2014) Defining the chemokine basis for leukocyte recruitment during viral encephalitis. J Virol 88(17):9553–9567. doi: 10.1128/JVI.03421-13 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Barkhouse DA, Garcia SA, Bongiorno EK, Lebrun A, Faber M, Hooper DC (2015) Expression of interferon gamma by a recombinant rabies virus strongly attenuates the pathogenicity of the virus via induction of type I interferon. J Virol 89(1):312–322. doi: 10.1128/JVI.01572-14 PubMedCrossRefGoogle Scholar
  87. 87.
    Improta T, Pine R, Pfeffer LM (1992) Interferon-gamma potentiates the antiviral activity and the expression of interferon-stimulated genes induced by interferon-alpha in U937 cells. J Interferon Res 12(2):87–94PubMedCrossRefGoogle Scholar
  88. 88.
    Matsumoto M, Tanaka N, Harada H, Kimura T, Yokochi T, Kitagawa M, Schindler C, Taniguchi T (1999) Activation of the transcription factor ISGF3 by interferon-gamma. Biol Chem 380(6):699–703. doi: 10.1515/BC.1999.087 PubMedCrossRefGoogle Scholar
  89. 89.
    Mosmann TR, Sad S, Krishnan L, Wegmann TG, Guilbert LJ, Belosevic M (1995) Differentiation of subsets of CD4+ and CD8+ T cells. Ciba Found Symp 195:42–54PubMedGoogle Scholar
  90. 90.
    Lebrun A, Portocarrero C, Kean RB, Barkhouse DA, Faber M, Hooper DC (2015) T-bet is required for the rapid clearance of attenuated rabies virus from central nervous system tissue. J Immunol 195(9):4358–4368. doi: 10.4049/jimmunol.1501274 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, Bechmann I, Becher B, Luhmann HJ, Waisman A, Kuhlmann CR (2010) Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J 24(4):1023–1034. doi: 10.1096/fj.09-141978 PubMedCrossRefGoogle Scholar
  92. 92.
    Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4+ T cells: differentiation and functions. Clin Dev Immunol 2012:1–12. doi: 10.1155/2012/925135 CrossRefGoogle Scholar
  93. 93.
    Hooper DC, Morimoto K, Bette M, Weihe E, Koprowski H, Dietzschold B (1998) Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system. J Virol 72(5):3711–3719PubMedPubMedCentralGoogle Scholar
  94. 94.
    Wiktor TJ, MacFarlan RI, Reagan KJ, Dietzschold B, Curtis PJ, Wunner WH, Kieny MP, Lathe R (1984) Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc Natl Acad Sci USA 81(22):7194–7198PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Reddehase MJ, Cox JH, Koszinowski UH (1984) Frequency analysis of cytolytic T lymphocyte precursors (CTL-P) generated in vivo during lethal rabies infection of mice II Rabies virus genus specificity of CTL-P. Eur J Immunol 14(11):1039–1043PubMedCrossRefGoogle Scholar
  96. 96.
    Lafon M (2007) Immunology. In: Jackson AC, Wunner WH (eds) Rabies. Elsevier, OxfordGoogle Scholar
  97. 97.
    Galelli A, Baloul L, Lafon M (2000) Abortive rabies virus central nervous infection is controlled by T lymphocyte local recruitment and induction of apoptosis. J Neurovirol 6(5):359–372PubMedCrossRefGoogle Scholar
  98. 98.
    Hooper DC (2005) The role of immune responses in the pathogenesis of rabies. J Neurovirol 11(1):88–92. doi: 10.1080/13550280590900418 PubMedCrossRefGoogle Scholar
  99. 99.
    Abbas A, Lichtman AH, Pillai S (2012) Imunologia celular e molecular, 7th edn. Elsevier, OxfordGoogle Scholar
  100. 100.
    Dietzschold B, Kao M, Zheng YM, Chen ZY, Maul G, Fu ZF, Rupprecht CE, Koprowski H (1992) Delineation of putative mechanisms involved in antibody-mediated clearance of rabies virus from the central nervous system. Proc Natl Acad Sci USA 89(15):7252–7256PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Dietzschold B (1993) Antibody-mediated clearance of viruses from the mammalian central nervous system. Trends Microbiol 1(2):63–66PubMedCrossRefGoogle Scholar
  102. 102.
    Levine B, Hardwick JM, Trapp BD, Crawford TO, Bollinger RC, Griffin DE (1991) Antibody-mediated clearance of alphavirus infection from neurons. Science 254(5033):856–860PubMedCrossRefGoogle Scholar
  103. 103.
    Flamand A, Raux H, Gaudin Y, Ruigrok RW (1993) Mechanisms of rabies virus neutralization. Virology 194(1):302–313PubMedCrossRefGoogle Scholar
  104. 104.
    Irie T, Kawai A (2002) Studies on the different conditions for rabies virus neutralization by monoclonal antibodies #1-46-12 and #7-1-9. J Gen Virol 83(12):3045–3053. doi: 10.1099/0022-1317-83-12-3045 PubMedCrossRefGoogle Scholar
  105. 105.
    Bournazos S, DiLillo DJ, Ravetch JV (2015) The role of Fc-FcγR interactions in IgG-mediated microbial neutralization. J Exp Med 212(9):1361–1369. doi: 10.1084/jem.20151267 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Li Z, Cheng Y, Xi H, Gu T, Yuan R, Chen X, Jiang C, Kong W, Wu Y (2015) A novel variable antibody fragment dimerized by leucine zippers with enhanced neutralizing potency against rabies virus G protein compared to its corresponding single-chain variable antibody fragment. Mol Immunol 68:168–175. doi: 10.1016/jmolimm201506027 PubMedCrossRefGoogle Scholar
  107. 107.
    Dietzschold B, Wang HH, Rupprecht CE, Celis E, Tollis M, Ertl H, Heber-Katz E, Koprowski H (1987) Induction of protective immunity against rabies by immunization with rabies virus ribonucleoprotein. Proc Natl Acad Sci USA 84(24):9165–9169PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Fu ZF, Dietzschold B, Schumacher CL, Wunner WH, Ertl HC, Koprowski H (1991) Rabies virus nucleoprotein expressed in and purified from insect cells is efficacious as a vaccine. Proc Natl Acad Sci USA 88(5):2001–2005PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hooper DC, Pierard I, Modelska A, Otvos L Jr, Fu ZF, Koprowski H, Dietzschold B (1994) Rabies ribonucleocapsid as an oral immunogen and immunological enhancer. Proc Natl Acad Sci USA 91(23):10908–10912PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Dorfmeier CL, Shen S, Tzvetkov EP, McGettigan JP (2013) Reinvestigating the role of IgM in rabies virus postexposure vaccination. J Virol 87(16):9217–9222. doi: 10.1128/JVI.00995-13 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Dorfmeier CL, Tzvetkov EP, Gatt A, McGettigan JP (2013) Investigating the role for IL-21 in rabies virus vaccine-induced immunity. PLoS Negl Trop Dis 7(3):e2129. doi: 10.1371/journal.pntd.0002129 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Hooper DC, Phares TW, Fabis MJ, Roy A (2009) The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system. PLoS Negl Trop Dis 3(10):1–8. doi: 10.1371/journal.pntd.0000535 CrossRefGoogle Scholar
  113. 113.
    Gnanadurai CW, Zhou M, He W, Leyson CM, Huang CT, Salyards G, Harvey SB, Chen Z, He B, Yang Y, Hooper DC, Dietzchold B, Fu ZF (2013) Presence of virus neutralizing antibodies in cerebral spinal fluid correlates with non-lethal rabies in dogs. PLoS Negl Trop Dis 7:e2375, 1–8. doi: 10.1371/journal.pntd.0002375 CrossRefGoogle Scholar
  114. 114.
    Wen Y, Wang H, Wu H, Yang F, Tripp RA, Hogan RJ, Fu ZF (2011) Rabies virus expressing dendritic cell-activating molecules enhances the innate and adaptive immune response to vaccination. J Virol 85:1634–1644. doi: 10.1128/JVI.01552-10 PubMedCrossRefGoogle Scholar
  115. 115.
    Zhou M, Wang L, Zhou S, Wang Z, Ruan J, Tang L, Jia Z, Cui M, Zhao L, Fu ZF (2015) Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs. Oncotarget 6:38504–38516. doi: 10.18632/oncotarget.5904 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Wang Z, Li M, Zhou M, Zhang Y, Yang J, Cao Y, Wang K, Cui M, Chen H, Fu ZF, Zhao L (2017) A novel rabies vaccine expressing CXCL13 enhances humoral immunity by recruiting both T follicular helper and germinal center B cells. J Virol 91(3):e01956–e02016. doi: 10.1128/JVI.01956-16 PubMedPubMedCentralGoogle Scholar
  117. 117.
    Luo J, Zhang B, Wu Y, Tian Q, Zhao J, Lyu Z, Zhang Q, Mei M, Luo Y, Guo X (2017) Expression of interleukin-6 by a recombinant rabies virus enhances its immunogenicity as a potential vaccine. Vaccine 35(6):938–944. doi: 10.1016/j.vaccine.2016.12.069 PubMedCrossRefGoogle Scholar
  118. 118.
    Zhang Y, Zhou M, Wang Z, Yang J, Li M, Wang K, Cui M, Chen H, Fu ZF, Zhao L (2016) Recombinant rabies virus expressing IL-21 enhances immunogenicity through activation of T follicular helper cells and germinal centre B cells. J Gen Virol 97(12):3154–3160. doi: 10.1099/jgv.0.000646 PubMedCrossRefGoogle Scholar
  119. 119.
    Zhao L, Toriumi H, Wang H, Kuang Y, Guo X, Morimoto K, Fu ZF (2010) Expression of MIP-1alpha (CCL3) by a recombinant rabies virus enhances its immunogenicity by inducing innate immunity and recruiting dendritic cells and B cells. J Virol 84(18):9642–9648. doi: 10.1128/JVI.00326-10 (Epub 2010 Jun 30) PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Norton JE Jr, Lytle AG, Shen S, Tzvetkov EP, Dorfmeier CL, McGettigan JP (2014) ICAM-1-based rabies virus vaccine shows increased infection and activation of primary murine B cells in vitro and enhanced antibody titers in-vivo. PLoS One 9(1):e87098. doi: 10.1371/journal.pone.0087098 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Li Y, Zhou M, Luo Z, Zhang Y, Cui M, Chen H, Fu ZF, Zhao L (2017) Overexpression of interleukin-7 extends the humoral immune response induced by rabies vaccination. J Virol 91(7):e02324–e02416. doi: 10.1128/JVI.02324-16 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lytle AG, Norton JE Jr, Dorfmeier CL, Shen S, McGettigan JP (2013) B cell infection and activation by rabies virus-based vaccines. J Virol 87(16):9097–9110. doi: 10.1128/JVI.00800-13 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Haley SL, Tzvetkov EP, Meuwissen S, Plummer JR, McGettigan JP (2017) Targeting vaccine-induced extrafollicular pathway of B cell differentiation improves rabies postexposure prophylaxis. J Virol 91(8):e02435–e02516. doi: 10.1128/JVI.02435-16 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669. doi: 10.1016/S0092-8674(00)80702-3 PubMedCrossRefGoogle Scholar
  125. 125.
    Nathwani D, McIntyre PG, White K, Shearer AJ, Reynolds N, Walker D, Orange GV, Fooks AR (2003) Fatal human rabies caused by European bat Lyssavirus type 2a infection in Scotland. Clin Infect Dis 37(4):598–601. doi: 10.1086/376641 PubMedCrossRefGoogle Scholar
  126. 126.
    Solomon T, Marston D, Mallewa M, Felton T, Shaw S, McElhinney LM, Das K, Mansfield K, Wainwright J, Kwong GN, Fooks AR (2005) Paralytic rabies after a two weeks’ holiday in India. BMJ 331(7515):501–503. doi: 10.1136/bmj.331.7515.501 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Willoughby RE Jr, Tieves KS, Hoffman GM, Ghanayem NS, Amlie-Lefond CM, Schwabe MJ, Chusid MJ, Rupprecht CE (2005) Survival after treatment of rabies with induction of coma. N Engl J Med 352(24):2508–2514. doi: 10.1056/NEJMoa050382 PubMedCrossRefGoogle Scholar
  128. 128.
    Hemachudha T, Sunsaneewitayakul B, Desudchit T, Suankratay C, Sittipunt C, Wacharapluesadee S, Khawplod P, Wilde H, Jackson AC (2006) Failure of therapeutic coma and ketamine for therapy of human rabies. J Neurovirol 12(5):407–409. doi: 10.1080/13550280600902295 PubMedCrossRefGoogle Scholar
  129. 129.
    Huang CT, Li Z, Huang Y, Zhang G, Zhou M, Chai Q, Wu H, Fu ZF (2014) Enhancement of blood-brain barrier permeability is required for intravenously administered virus neutralizing antibodies to clear an established rabies virus infection from the brain and prevent the development of rabies in mice. Antiviral Res 110:132–141. doi: 10.1016/j.antiviral.2014.07.013 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Knopf PM, Harling-Berg CJ, Cserr HF, Basu D, Sirulnick EJ, Nolan SC, Park JT, Keir G, Thompson EJ, Hickey WF (1998) Antigen-dependent intrathecal antibody synthesis in the normal rat brain: tissue entry and local retention of antigen-specific B cells. J Immunol 161(2):692–701PubMedGoogle Scholar
  131. 131.
    Alter A, Duddy M, Hebert S, Biernacki K, Prat A, Antel JP, Yong VW, Nuttall RK, Pennington CJ, Edwards DR, Bar-Or A (2003) Determinants of human B cell migration across brain endothelial cells. J Immunol 170(9):4497–4505. doi: 10.4049/jimmunol.170.9.4497 PubMedCrossRefGoogle Scholar
  132. 132.
    Muehlinghaus G, Cigliano L, Huehn S, Peddinghaus A, Leyendeckers H, Hauser AE, Hiepe F, Radbruch A, Arce S, Manz RA (2005) Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood 105(10):3965–3971. doi: 10.1182/blood-2004-08-2992 PubMedCrossRefGoogle Scholar
  133. 133.
    Pedemonte E, Mancardi G, Giunti D, Corcione A, Benvenuto F, Pistoia V, Uccelli A (2006) Mechanisms of the adaptive immune response inside the central nervous system during inflammatory and autoimmune diseases. Pharmacol Ther 111(3):555–566. doi: 10.1016/j.pharmthera.2005.11.007 PubMedCrossRefGoogle Scholar
  134. 134.
    Prendergast CT, Anderton SM (2009) Immune cell entry to central nervous system–current understanding and prospective therapeutic targets. Endocr Metab Immune Disord Drug Targets 9(4):315–327. doi: 10.2174/187153009789839219 PubMedCrossRefGoogle Scholar
  135. 135.
    Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3:1013–1018. doi: 10.1038/ni1102-1013 PubMedCrossRefGoogle Scholar
  136. 136.
    Chelbi-Alix MK, Vidy A, El Bougrini J, Blondel D (2006) Rabies viral mechanisms to escape the IFN system: the viral protein P interferes with IRF-3, Stat1, and PML nuclear bodies. J Interferon Cytokine Res 26(5):271–280. doi: 10.1089/jir.2006.26.271 PubMedCrossRefGoogle Scholar
  137. 137.
    Lieu KG, Brice A, Wiltzer L, Hirst B, Jans DA, Blondel D, Moseley GW (2013) The rabies virus interferon antagonist P protein interacts with activated STAT3 and inhibits Gp130 receptor signaling. J Virol 87(14):8261–8265. doi: 10.1128/JVI.00989-13 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Niu X, Tang L, Tseggai T, Guo Y, Fu ZF (2013) Wild-type rabies virus phosphoprotein is associated with viral sensitivity to type I interferon treatment. Arch Virol 158(11):2297–2305. doi: 10.1007/s00705-013-1743-2 PubMedCrossRefGoogle Scholar
  139. 139.
    Shimizu K, Ito N, Sugiyama M, Minamoto N (2006) Sensitivity of rabies virus to type I interferon is determined by the phosphoprotein gene. Microbiol Immunol 50(12):975–978. doi: 10.1111/j.1348-0421.2006.tb03875.x PubMedCrossRefGoogle Scholar
  140. 140.
    Wiltzer L, Okada K, Yamaoka S, Larrous F, Kuusisto HV, Sugiyama M, Blondel D, Bourhy H, Jans DA, Ito N, Moseley GW (2014) Interaction of rabies virus P-protein with STAT proteins is critical to lethal rabies disease. J Infect Dis 209(11):1744–1753. doi: 10.1093/infdis/jit829 PubMedCrossRefGoogle Scholar
  141. 141.
    Brzózka K, Finke S, Conzelmann KK (2006) Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2. Virol 80(6):2675–2683. doi: 10.1128/JVI.80.6.2675-2683.2006 CrossRefGoogle Scholar
  142. 142.
    Thoulouze M, Lafage M, Montano-hirose JA, Lafon M (1997) Rabies virus infects mouse and human lymphocytes and induces apoptosis. J Virol 71(10):7372–7380PubMedPubMedCentralGoogle Scholar
  143. 143.
    Masatani T, Ito N, Shimizu K, Ito Y, Nakagawa K, Sawaki Y, Koyama H, Sugiyama M (2010) Rabies virus nucleoprotein functions to evade activation of the RIG-I-mediated antiviral response. J Virol 84(8):4002–4012. doi: 10.1128/JVI.02220-09 PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Masatani T, Ito N, Shimizu K, Ito Y, Nakagawa K, Abe M, Yamaoka S, Sugiyama M (2011) Amino acids at positions 273 and 394 in rabies virus nucleoprotein are important for both evasion of host RIG-I-mediated antiviral response and pathogenicity. Virus Res 155(1):168–174. doi: 10.1016/j.virusres.2010.09.016 PubMedCrossRefGoogle Scholar
  145. 145.
    Masatani T, Ito N, Ito Y, Nakagawa K, Abe M, Yamaoka S, Okadera K, Sugiyama M (2013) Importance of rabies virus nucleoprotein in viral evasion of interferon response in the brain. Microbiol Immunol 57(7):511–517. doi: 10.1111/1348-0421.12058 PubMedGoogle Scholar
  146. 146.
    Luco S, Delmas O, Vidalain PO, Tangy F, Weil R, Bourhy H (2012) RelAp43, a member of the NF-κB family involved in innate immune response against Lyssavirus infection. PLoS Pathog 8(12):e1003060, 1–16. doi: 10.1371/journal.ppat.1003060 CrossRefGoogle Scholar
  147. 147.
    Faber M, Pulmanausahakul R, Hodawadekar SS, Spitsin S, McGettigan JP, Schnell MJ, Dietzschold B (2002) Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. J Virol 76(7):3374–3381. doi: 10.1128/JVI.76.7.3374-3381.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Zhang G, Wang H, Mahmood F, Fu ZF (2013) Rabies virus glycoprotein is an important determinant for the induction of innate immuneresponses and the oathogenic mechanisms. Vet Microbiol 162(4):6001–6013. doi: 10.1016/j.vetmic.2012.11.031 Google Scholar
  149. 149.
    Reid JE, Jackson AC (2001) Experimental rabies virusinfection in Artibeus jamaicensis bats with CVS-24 variants. J Neurovirol 7(6):511–517. doi: 10.1080/135502801753248097 PubMedCrossRefGoogle Scholar
  150. 150.
    Fu ZF, Jackson AC (2005) Neuronal dysfunction and death in rabies virus infection. J Neurovirol 11(1):101–106. doi: 10.1080/13550280590900445 PubMedCrossRefGoogle Scholar
  151. 151.
    Sarmento L, Li X, Howerth E, Jackson AC, Fu ZF (2005) Glycoprotein-mediated induction of apoptosis limits the spread of attenuated rabies viruses in the central nervous system of mice. J Neurovirol 11(6):571–581. doi: 10.1080/13550280500385310 PubMedCrossRefGoogle Scholar
  152. 152.
    Baloul L, Lafon M (2003) Apoptosis and rabies virus neuroinvasion. Biochimie 85(8):777–788. doi: 10.1016/S0300-9084(03)00137-8 PubMedCrossRefGoogle Scholar
  153. 153.
    Fernandes ER, de Andrade HF, Jr Lancellotti CL, Quaresma JA, Demachki S, da Costa Vasconcelos PF, Duarte MI (2011) In situ apoptosis of adaptive immune cells and the cellular escape of rabies virus in CNS from patients with human rabies transmitted by Desmodus rotundus. Virus Res 156(1–2):121–126. doi: 10.1016/j.virusres.2011.01.006 PubMedCrossRefGoogle Scholar
  154. 154.
    Prehaud C, Lay S, Dietzschold B, Lafon M (2003) Glycoprotein of nonpathogenic rabies viruses is a key determinant of human cell apoptosis. J Virol 77(19):10537–10547. doi: 10.1128/JVI.77.19.10537-10547.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Wirblich C, Schnell MJ (2011) Rabies virus (RV) glycoprotein expression levels are not critical for pathogenicity of RV. J Virol 85(2):697–704. doi: 10.1128/JVI.01309-10 PubMedCrossRefGoogle Scholar
  156. 156.
    Weli SC, Scott CA, Ward CA, Jackson AC (2006) Rabies virus infection of primary neuronal cultures and adult mice:failure to demonstrate evidence of excitotoxicity. J Virol 80(20):10270–11027. doi: 10.1128/JVI.01272-06 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Suja MS, Mahadevan A, Madhusudana SN, Madhusudana SK (2011) Role of apoptosis in rabies viral encephalitis: a comparative study in mice, canine, and human brain with a review of literature. Pathol Res Int 74286:1–13. doi: 10.4061/2011/374286 CrossRefGoogle Scholar
  158. 158.
    Jackson AC, Randle E, Lawrance G, Rossiter JP (2008) Neuronal apoptosis does not play an important role in human rabies encephalitis. J Neurovirol 14(5):368–375. doi: 10.1080/13550280802216502 PubMedCrossRefGoogle Scholar
  159. 159.
    Yan X, Yan X, Prosniak M, Curtis MT, Weiss ML, Faber M, Dietzschold B, Fu ZF (2001) Silver-haired bat rabies virus variant does not induce apoptosis in the brain of experimentally infected mice. J Neurovirol 7(6):518–527. doi: 10.1080/135502801753248105 PubMedCrossRefGoogle Scholar
  160. 160.
    Li XQ, Sarmento L, Fu ZF (2005) Degeneration of neuronal processes after infection with pathogenic, but not attenuated, rabies viruses. J Virol 79(15):10063–10068. doi: 10.1128/JVI.79.15.10063-10068.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kammouni W, Wood H, Saleh A, Appolinario CM, Fernyhough P, Jackson AC (2015) Rabies virus phosphoprotein interacts with mitochondrial complex I and induces mitochondrial dysfunction and oxidative stress. J Neurovirol 21(4):370–382. doi: 10.1007/s13365-015-0320-8 PubMedCrossRefGoogle Scholar
  162. 162.
    Liu J, Wang H, Jinyan G, Deng T, Yuan Z, Boli H, Yunbin X, Yana Y, Zan J, Liao M, DiCaprio E, Li J, Shuo S, Zhou J (2017) BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy 13(4):739–753. doi: 10.1080/15548627.2017.1280220 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Lafon M (2008) Immune evasion, a critical strategy for rabies virus. Dev Biol (Basel) 131:413–419. doi: 10.1016/B978-0-12-387040-7.00003-2 Google Scholar
  164. 164.
    Kip E, Nazé F, Suin V, Vanden Berghe T, Francart A, Lamoral S, Vandenabeele P, Beyaert R, Van Gucht S, Kalai M (2017) Impact of caspase-1/11, -3, -7, or IL-1β/IL-18 deficiencyon rabies virus-induced macrophage cell death and onset of disease. Cell Death Discov 3:17012. doi: 10.1038/cddiscovery.2017.12 PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Mégret F, Prehaud C, Lafage M, Moreau P, Rouas-Freiss N, Carosella ED, Lafon M (2007) Modulation of HLA-G and HLA-E expression in human neuronal cells after rabies virus or herpes virus simplex type 1 infections. Hum Immunol 68(4):294–302. doi: 10.1016/j.humimm.2006.12.003 PubMedCrossRefGoogle Scholar
  166. 166.
    Carosella ED, Moreau P, Aractingi S, Rouas-Freiss N (2001) HLA-G: a shield against inflammatory aggression. Trends Immunol 22(10):553–555. doi: 10.1016/S1471-4906(01)02007-5 PubMedCrossRefGoogle Scholar
  167. 167.
    Phares TW, Stohlman SA, Hinton DR, Atkinson R, Bergmann CC (2010) Enhanced antiviral T cell function in the absence of B7-H1 is insufficient to prevent persistence but exacerbates axonal bystander damage during viral encephalomyelitis. J Immunol 185(9):5607–5618. doi: 10.4049/jimmunol1001984 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Bentivoglio M, Kristensson K (2014) Tryps and trips: cell trafficking across the 100-year-old blood-brain barrier. Trends Neurosci 37(6):325–333. doi: 10.1016/jtins201403007 PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Cervantes-Barragán L, Firner S, Bechmann I, Waisman A, Lahl K, Sparwasser T, Thiel V, Ludewig B (2012) Regulatory T cells selectively preserve immune privilege of self-antigens during viral central nervous system infection. J Immunol 188(8):3678–3685. doi: 10.4049/jimmunol.1102422 PubMedCrossRefGoogle Scholar
  170. 170.
    Tsekoa TL, Lotter-Stark T, Buthelezi S, Chakauya E, Stoychev SH, Sabeta C, Shumba W, Phahladira B, Hume S, Morton J, Rupprecht CE, Steinkellner H, Pauly M, Zeitlin L, Whaley K, Chikwamba R (2016) Efficient in vitro and in vivo activity of glyco-engineered plant-produced rabies monoclonal antibodies E559 and 62-71-3. PLoS One 11(7):e0159313. doi: 10.1371/journal.pone.0159313 PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Schanzer J, Jekle A, Nezu J, Lochner A, Croasdale R, Dioszegi M, Zhang J, Hoffmann E, Dormeyer W, Stracke J, Schäfer W, Ji C, Heilek G, Cammack N, Brandt M, Umana P, Brinkmann U (2011) Development of tetravalent, bispecific CCR5 antibodies with antiviral activity against CCR5 monoclonal antibody-resistant HIV-1 strains. Antimicrob Agents Chemother 55(5):2369–2378. doi: 10.1128/AAC.00215-10 PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Spiess C, Bevers J 3rd, Jackman J, Chiang N, Nakamura G, Dillon M, Liu H, Molina P, Elliott JM, Shatz W, Scheer JM, Giese G, Persson J, Zhang Y, Dennis MS, Giulianotti J, Gupta P, Reilly D, Palma E, Wang J, Stefanich E, Scheerens H, Fuh G, Wu LC (2013) Development of a human IgG4 bispecific antibody for dual targeting of interleukin-4 (IL-4) and interleukin-13 (IL-13) cytokines. J Biol Chem 288(37):26583–26593. doi: 10.1074/jbc.M113.480483 PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Phoolcharoen W, Prehaud C, van Dolleweerd CJ, Both L, da Costa A, Lafon M, Ma JK (2017) Enhanced transport of plant-produced rabies single-chain antibody-RVG peptide fusion protein across an in cellulo blood-brain barrier device. Plant Biotechnol J. doi: 10.1111/pbi.12719 PubMedPubMedCentralGoogle Scholar
  174. 174.
    Bournazos S, Klein F, Pietzsch J, Seaman MS, Nussenzweig MC, Ravetch JV (2014) Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell 158(6):1243–1253. doi: 10.1016/j.cell.2014.08.023 PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    DiLillo DJ, Tan GS, Palese P, Ravetch JV (2014) Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat Med 20(2):143–151. doi: 10.1038/nm.3443 PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Mehta S, Roy S, Mukherjee S, Yadav N, Patel N, Chowdhary A (2015) Exogenous interferon prolongs survival of rabies infected mice. Virus Dis 26(3):163–169. doi: 10.1007/s13337-015-0269-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Instituto PasteurSão PauloBrazil

Personalised recommendations