Archives of Virology

, Volume 161, Issue 9, pp 2449–2455 | Cite as

VRC01 antibody protects against vaginal and rectal transmission of human immunodeficiency virus 1 in hu-BLT mice

  • Ming Sun
  • Yue Li
  • Zhe Yuan
  • Wuxun Lu
  • Guobin Kang
  • Wenjin Fan
  • Qingsheng Li
Original Article


Broadly neutralizing antibodies (bNAbs) represent a new generation of antiviral agents for the prevention and treatment of human immunodeficiency virus 1 (HIV-1) infection. A better understanding of the in vivo efficacy of HIV-1 bNAbs, such as VRC01, in preventing mucosal transmission of HIV-1 has important implications for HIV-1 vaccine design. In this study, we evaluated the efficacy of passively transferred VRC01 antibody in preventing HIV-1 vaginal and rectal transmission in humanized bone marrow/liver/thymus mice (hu-BLT mice). Mice were subcutaneously injected with VRC01 IgG, and 24 hours later, they were challenged intravaginally or intrarectally with HIV-1Ada. All hu-BLT mice receiving VRC01 IgG antibody were aviremic at 2 weeks after intravaginal (n = 3) or intrarectal (n = 6) challenge as measured by quantitative real-time RT-PCR. In contrast, mice receiving control IgG all became infected. By 5 and 6 weeks post-challenge, some of VRC01 aviremic mice in both the intravaginal and intrarectal challenge groups became viremic. Our results suggest that VRC01 antibody can be protective against HIV-1 vaginal and rectal transmission; however, a single administration of VRC01 cannot completely prevent mucosal infection.


Human Fetal Liver Maximum Percent Inhibition Mucosal Transmission Rectal Transmission VRC01 Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for the hu-BLT mouse care and maintenance services provided by UNL Life Sciences Annex, and Lance Daharsh for critical reading of this manuscript.

Compliance with ethical standards


This work was supported in part by NIH grant R01 AI111862 (to Li Q. and Guo J.) and NIH P30GM103509. Yue Li was supported by a Fogarty International Center grant at the University of Nebraska-Lincoln (D43 TW001429).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

705_2016_2942_MOESM1_ESM.xls (25 kb)
Supplemental Table 1 Quantification of human immune reconstitution in mice peripheral blood samples 12-16 weeks post-transplantation in this study using multi-parameter flow cytometry. The percentage of human leukocytes (human CD45+ and mouse CD45-) cells out of total leukocytes (FSC, SSC gating) in hu-BLT mouse blood and percentage of CD4+ T cells and CD8+ T cells out of total human T cells (human CD45+ and CD3+) at weeks 12 to 16 after surgery are also shown in this table.


  1. 1.
    Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K, Pietzsch J et al (2009) Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458:636–640CrossRefPubMedGoogle Scholar
  2. 2.
    Walker LM, Phogat SK, Chan-Hui P-Y, Wagner D, Phung P, Goss JL et al (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326:285–289CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wu X, Yang Z-Y, Li Y, Hogerkorp C-M, Schief WR, Seaman MS et al (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:856–861CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien J-P et al (2011) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477:466–470CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F, Oliveira TYK et al (2011) Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333:1633–1637CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA, Longo NS et al (2012) Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491:406–412Google Scholar
  7. 7.
    Diskin R, Scheid JF, Marcovecchio PM, West AP, Klein F, Gao H et al (2011) Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science 334:1289–1293CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    McLellan JS, Pancera M, Carrico C, Gorman J, Julien J-P, Khayat R et al (2011) Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480:336–343CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mouquet H, Scharf L, Euler Z, Liu Y, Eden C, Scheid JF et al (2012) Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc Natl Acad Sci 109:E3268–E3277CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Klein F, Halper-Stromberg A, Horwitz JA, Gruell H, Scheid JF, Bournazos S et al (2012) HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 492:118–122CrossRefPubMedGoogle Scholar
  11. 11.
    Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez BM et al (2010) Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One 5:0008805CrossRefGoogle Scholar
  12. 12.
    Veazey RS, Shattock RJ, Pope M, Kirijan JC, Jones J, Hu Q et al (2003) Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat Med 9:343–346CrossRefPubMedGoogle Scholar
  13. 13.
    Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G, Forthal DN et al (2009) Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog 5:15CrossRefGoogle Scholar
  14. 14.
    Hessell AJ, Rakasz EG, Tehrani DM, Huber M, Weisgrau KL, Landucci G et al (2010) Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immunodeficiency virus SHIVBa-L. J Virol 84:1302–1313CrossRefPubMedGoogle Scholar
  15. 15.
    Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC, Hayes D et al (1999) Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J Virol 73:4009–4018PubMedPubMedCentralGoogle Scholar
  16. 16.
    Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, Hanson CE et al (2000) Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 6:207–210CrossRefPubMedGoogle Scholar
  17. 17.
    Scheid JF, Mouquet H, Feldhahn N, Walker BD, Pereyra F, Cutrell E et al (2009) A method for identification of HIV gp140 binding memory B cells in human blood. J Immunol Methods 343:65–67CrossRefPubMedGoogle Scholar
  18. 18.
    Moldt B, Rakasz EG, Schultz N, Chan-Hui P-Y, Swiderek K, Weisgrau KL et al (2012) Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc Natl Acad Sci USA 109:18921–18925CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Saunders KO, Pegu A, Georgiev IS, Zeng M, Joyce MG, Yang Z-Y et al (2015) Sustained delivery of a broadly neutralizing antibody in nonhuman primates confers long-term protection against simian/human immunodeficiency virus infection. J Virol 89:5895–5903CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Veselinovic M, Preston Neff C, Mulder LR, Akkina R (2012) Topical gel formulation of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against HIV-1 vaginal challenge in a humanized mouse model. Virology 432:505–510CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hatziioannou T, Evans DT (2012) Animal models for HIV/AIDS research. Nat Rev Microbiol 10:852–867CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Evans DT, Silvestri G (2013) Nonhuman primate models in AIDS research. Curr Opin HIV AIDS 8:255–261PubMedPubMedCentralGoogle Scholar
  23. 23.
    Deruaz M, Luster AD (2013) BLT humanized mice as model to study HIV vaginal transmission. J Infect Dis 208(Suppl 2):S131–S136CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Melkus MW, Estes JD, Padgett-Thomas A, Gatlin J, Denton PW, Othieno FA et al (2006) Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat Med 12:1316–1322CrossRefPubMedGoogle Scholar
  25. 25.
    Sun Z, Denton PW, Estes JD, Othieno FA, Wei BL, Wege AK et al (2007) Intrarectal transmission, systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. J Exp Med 204:705–714CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Brehm MA, Shultz LD, Luban J, Greiner DL (2013) Overcoming current limitations in humanized mouse research. J Infect Dis 208:S125–S130CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zhou T, Georgiev I, Wu X, Yang Z-Y, Dai K, Finzi A et al (2010) Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329:811–817CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wu X, Zhang Z, Schramm Chaim A, Joyce MG, Do Kwon Y, Zhou T et al (2015) Maturation and diversity of the VRC01-antibody lineage over 15 years of chronic HIV-1 infection. Cell 161:470–485CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wu X, Zhou T, Zhu J, Zhang B, Georgiev I, Wang C et al (2011) Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333:1593–1602CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhou T, Zhu J, Wu X, Moquin S, Zhang B, Acharya P et al (2013) Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity 39:245–258CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ledgerwood JE, Coates EE, Yamshchikov G, Saunders JG, Holman L, Enama ME et al (2015) Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults. Clin Exp Immunol 182:289–301CrossRefPubMedGoogle Scholar
  32. 32.
    Lynch RM, Boritz E, Coates EE, DeZure A, Madden P, Costner P et al (2015) Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci Transl Med 7:319ra206–319ra206CrossRefPubMedGoogle Scholar
  33. 33.
    Wang LX, Kang G, Kumar P, Lu W, Li Y, Zhou Y et al (2014) Humanized-BLT mouse model of Kaposi’s sarcoma-associated herpesvirus infection. Proc Natl Acad Sci USA 111:3146–3151CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li Q, Tso FY, Kang G, Lu W, Li Y, Fan W et al (2015) Early initiation of antiretroviral therapy can functionally control productive HIV-1 infection in humanized-BLT mice. J Acquir Immune Defic Syndr 69:519–527CrossRefPubMedGoogle Scholar
  35. 35.
    Seaman MS, Janes H, Hawkins N, Grandpre LE, Devoy C, Giri A et al (2010) Tiered categorization of a diverse panel of HIV-1 Env pseudoviruses for assessment of neutralizing antibodies. J Virol 84:1439–1452CrossRefPubMedGoogle Scholar
  36. 36.
    Wheeler LA, Trifonova R, Vrbanac V, Basar E, McKernan S, Xu Z et al (2011) Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest 121:2401–2412CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lee FH, Mason R, Welles H, Learn GH, Keele BF, Roederer M et al (2015) Breakthrough virus neutralization resistance as a correlate of protection in a nonhuman primate heterologous simian immunodeficiency virus vaccine challenge study. J Virol 89:12388–12400PubMedPubMedCentralGoogle Scholar
  38. 38.
    Rudicell RS, Kwon YD, Ko SY, Pegu A, Louder MK, Georgiev IS et al (2014) Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol 88:12669–12682CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mascola JR (2002) Passive transfer studies to elucidate the role of antibody-mediated protection against HIV-1. Vaccine 20:1922–1925CrossRefPubMedGoogle Scholar
  40. 40.
    Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D (2012) Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481:81–84CrossRefGoogle Scholar
  41. 41.
    Balazs AB, Ouyang Y, Hong CM, Chen J, Nguyen SM, Rao DS et al (2014) Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med 20:296–300CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Della-Porta AJ, Westaway EG (1978) A multi-hit model for the neutralization of animal viruses. J Gen Virol 38:1–19CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Ming Sun
    • 1
    • 2
    • 3
  • Yue Li
    • 1
    • 2
    • 4
  • Zhe Yuan
    • 1
    • 2
  • Wuxun Lu
    • 1
    • 2
  • Guobin Kang
    • 1
    • 2
  • Wenjin Fan
    • 1
    • 2
  • Qingsheng Li
    • 1
    • 2
  1. 1.Nebraska Center for VirologyUniversity of Nebraska-LincolnLincolnUSA
  2. 2.School of Biological SciencesUniversity of Nebraska-LincolnLincolnUSA
  3. 3.Institute of Medical BiologyChinese Academy of Medical Science and Peking Union Medical CollegeKunmingChina
  4. 4.Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai UniversityTianjinChina

Personalised recommendations