Skip to main content

Advertisement

Log in

Development of a novel single-step reverse genetics system for the generation of classical swine fever virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We describe an alternative reverse genetics system for generating classical swine fever virus (CSFV) based on swine RNA polymerase I promoter (pSPI)-mediated vRNA transcription. The recombinant plasmid pSPTI/SM harboring a full-length CSFV Shimen strain cDNA, flanked by a swine RNA polymerase I (pol I) promoter sequence at the 5′ end and a murine pol I terminator sequence at the 3′ end, was constructed. When the plasmid pSPTI/SM was introduced into PK-15 cells by transfection, an infectious CSFV with termini identical to those of the parental virus was generated directly. CSFV rescued from this reverse genetics system exhibited similar growth kinetics and plaque formation compared with the parental CSFV. When the novel reverse genetics system was used to generate the CSFV vaccine C-strain, infectious virus was detected in the supernatant of PK-15 cells transfected with the recombinant plasmid pSPTI/C. This novel reverse genetics system is a simple and efficient tool for the investigation of the structure and function of the viral genome, for molecular pathogenicity studies, and for the development of genetically engineered vaccines for CSFV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aubry F, Nougairede A, Gould EA, de Lamballerie X (2015) Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antiviral Res 114:67–85

    Article  CAS  PubMed  Google Scholar 

  2. Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli N (2007) Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81:3087–3096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Been MD, Wickham GS (1997) Self-cleaving ribozymes of hepatitis delta virus RNA. Eur J Biochem 247:741–753

    Article  CAS  PubMed  Google Scholar 

  4. Bergeron LJ, Perreault JP (2002) Development and comparison of procedures for the selection of delta ribozyme cleavage sites within the hepatitis B virus. Nucleic Acids Res 30:4682–4691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Billecocq A, Gauliard N, Le May N, Elliott RM, Flick R, Bouloy M (2008) RNA polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent Rift Valley fever viruses. Virology 378:377–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elbers K, Tautz N, Becher P, Stoll D, Rumenapf T, Thiel HJ (1996) Processing in the pestivirus E2-NS2 region: identification of proteins p7 and E2p7. J Virol 70:4131–4135

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Feng LQ, Li F, Zheng XH, Pan WQ, Zhou K, Liu YC, He HX, Chen L (2009) The mouse Pol I terminator is more efficient than the hepatitis delta virus ribozyme in generating influenza-virus-like RNAs with precise 3′ ends in a plasmid-only-based virus rescue system. Archiv Virol 154:1151–1156

    Article  CAS  Google Scholar 

  8. Flick K, Hooper JW, Schmaljohn CS, Pettersson RF, Feldmann H, Flick R (2003) Rescue of Hantaan virus minigenomes. Virology 306:219–224

    Article  CAS  PubMed  Google Scholar 

  9. Flick R, Hobom G (1999) Transient bicistronic vRNA segments for indirect selection of recombinant influenza viruses. Virology 262:93–103

    Article  CAS  PubMed  Google Scholar 

  10. Flick R, Pettersson RF (2001) Reverse genetics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol 75:1643–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Freiberg A, Dolores LK, Enterlein S, Flick R (2008) Establishment and characterization of plasmid-driven minigenome rescue systems for Nipah virus: RNA polymerase I- and T7-catalyzed generation of functional paramyxoviral RNA. Virology 370:33–44

    Article  CAS  PubMed  Google Scholar 

  12. Grummt I, Maier U, Ohrlein A, Hassouna N, Bachellerie JP (1985) Transcription of mouse rDNA terminates downstream of the 3′ end of 28S RNA and involves interaction of factors with repeated sequences in the 3′ spacer. Cell 43:801–810

    Article  CAS  PubMed  Google Scholar 

  13. Heinz FX, Collett MS, Purcell RH, Gould EA, Howard CR, Houghton M, Moormann JM, Rice CM, Thiel H-J (2000) Family Flaviviridae. In: van Regenmortel RVMHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (eds) Virus taxonomy. Seventh report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, pp 859–878

    Google Scholar 

  14. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA 97:6108–6113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang JH, Li YF, He F, Li D, Sun Y, Han W, Qiu HJ (2013) Rapid recovery of classical swine fever virus directly from cloned cDNA. J Integr Agric 12:877–883

    Article  Google Scholar 

  16. Ji W, Guo Z, Ding NZ, He CQ (2014) Studying classical swine fever virus: making the best of a bad virus. Virus Res 197C:35–47

    Google Scholar 

  17. Li C, Huang J, Li Y, He F, Li D, Sun Y, Han W, Li S, Qiu HJ (2013) Efficient and stable rescue of classical swine fever virus from cloned cDNA using an RNA polymerase II system. Archiv Virol 158:901–907

    Article  CAS  Google Scholar 

  18. Li L, Wu R, Zheng F, Zhao C, Pan Z (2015) The N-terminus of classical swine fever virus (CSFV) nonstructural protein 2 modulates viral genome RNA replication. Virus Res 210:90–99

    Article  CAS  PubMed  Google Scholar 

  19. Li XF, Deng YQ, Yang HQ, Zhao H, Jiang T, Yu XD, Li SH, Ye Q, Zhu SY, Wang HJ, Zhang Y, Ma J, Yu YX, Liu ZY, Li YH, Qin ED, Shi PY, Qin CF (2013) A chimeric dengue virus vaccine using Japanese encephalitis virus vaccine strain SA14-14-2 as backbone is immunogenic and protective against either parental virus in mice and nonhuman primates. J Virol 87:13694–13705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lindenbach B, Thiel H, Rice C (2007) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA (eds) Fundamental virology. Lippincott Williams & Wilkins, Philadelphia, pp 1101–1152

    Google Scholar 

  21. Ling X, Arnheim N (1994) Cloning and identification of the pig ribosomal gene promoter. Gene 150:375–379

    Article  CAS  PubMed  Google Scholar 

  22. Mendez E, Ruggli N, Collett MS, Rice CM (1998) Infectious bovine viral diarrhea virus (strain NADL) RNA from stable cDNA clones: a cellular insert determines NS3 production and viral cytopathogenicity. J Virol 72:4737–4745

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Moennig V, Plagemann PG (1992) The pestiviruses. Adv Virus Res 41:53–98

    Article  CAS  PubMed  Google Scholar 

  24. Moncorge O, Long JS, Cauldwell AV, Zhou H, Lycett SJ, Barclay WS (2013) Investigation of influenza virus polymerase activity in pig cells. J Virol 87:384–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moormann RJ, van Gennip HG, Miedema GK, Hulst MM, van Rijn PA (1996) Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus. J Virol 70:763–770

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA 96:9345–9350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neumann G, Kawaoka Y (2004) Reverse genetics systems for the generation of segmented negative-sense RNA viruses entirely from cloned cDNA. Curr Top Microbiol Immunol 283:43–60

    CAS  PubMed  Google Scholar 

  28. Ogawa Y, Sugiura K, Kato K, Tohya Y, Akashi H (2007) Rescue of Akabane virus (family Bunyaviridae) entirely from cloned cDNAs by using RNA polymerase I. J Gen Virol 88:3385–3390

    Article  CAS  PubMed  Google Scholar 

  29. Reed LJ, Muench H (1938) A simple method for estimating fifty percent end points. Am J Hyg 27:493–497

    Google Scholar 

  30. Ruggli N, Tratschin JD, Mittelholzer C, Hofmann MA (1996) Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol 70:3478–3487

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rumenapf T, Stark R, Heimann M, Thiel HJ (1998) N-terminal protease of pestiviruses: identification of putative catalytic residues by site-directed mutagenesis. J Virol 72:2544–2547

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Russell J, Zomerdijk JC (2005) RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem Sci 30:87–96

    Article  CAS  PubMed  Google Scholar 

  33. Schweizer M, Peterhans E (2014) Pestiviruses. Annu Rev Anim Biosci 2:141–163

    Article  CAS  PubMed  Google Scholar 

  34. van Gennip HGP, van Rijn PA, Widjojoatmodjo MN, Moormann RJM (1999) Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase. J Virol Methods 78:117–128

    Article  PubMed  Google Scholar 

  35. Wang Y, Wang Q, Lu X, Zhang C, Fan X, Pan Z, Xu L, Wen G, Ning Y, Tang F, Xia Y (2008) 12-nt insertion in 3′ untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge. Virology 374:390–398

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Duke GM (2007) Cloning of the canine RNA polymerase I promoter and establishment of reverse genetics for influenza A and B in MDCK cells. Virol J 4:102

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wen GY, Xue JN, Shen YP, Zhang CY, Pan ZS (2009) Characterization of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) helicase activity and its modulation by CSFV RNA-dependent RNA polymerase. Virus Res 141:63–70

    Article  CAS  PubMed  Google Scholar 

  38. Wu R, Li L, Zhao Y, Tu J, Pan Z (2015) Identification of two amino acids within E2 important for the pathogenicity of chimeric classical swine fever virus. Virus Res 211:79–85

    Article  PubMed  Google Scholar 

  39. Yang Z, Wu R, Li RW, Li L, Xiong Z, Zhao H, Guo D, Pan Z (2012) Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections. Virus Res 165:61–70

    Article  CAS  PubMed  Google Scholar 

  40. Zhu YY, Machleder EM, Chenchik A, Li R, Siebert PD (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. BioTechniques 30:892–897

    CAS  PubMed  Google Scholar 

  41. Zobel A, Neumann G, Hobom G (1993) RNA polymerase I catalysed transcription of insert viral cDNA. Nucleic Acids Res 21:3607–3614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We were grateful to Dr. N. Ruggli and Dr. J.-D. Tratschin for kindly providing the plasmid pACNR1180. This study was funded by National Natural Science Foundation of China (31070134 and 31272585).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zishu Pan.

Ethics declarations

Conflicts of interest

All of the authors have agreed to the submission of this manuscript and are responsible for its contents; additionally, the authors have declared that no competing interests exist.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Pang, H., Wu, R. et al. Development of a novel single-step reverse genetics system for the generation of classical swine fever virus. Arch Virol 161, 1831–1838 (2016). https://doi.org/10.1007/s00705-016-2851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2851-6

Keywords

Navigation