Skip to main content

Advertisement

Log in

Synergistic roles of the E2 glycoprotein and 3′ untranslated region in the increased genomic stability of chimeric classical swine fever virus with attenuated phenotypes

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The E2 glycoprotein and 3′ untranslated region (UTR) of classical swine fever virus (CSFV) are virulence determinants. To investigate the synergistic roles of E2 and 3′UTR for pathogenicity and genomic stability, a series of chimeric CSFVs were constructed by replacing the E2 gene and/or 3′UTR of virulent CSFV strain Shimen with the corresponding sequence of the lapinized ‘Chinese’ strain (C-strain) using a reverse genetic approach. The in vitro growth characterization and in vivo pathogenicity of the chimeric CSFVs were investigated. Our results demonstrated that the E2 glycoprotein mediates virus cell-to-cell spread and viral particle release and that the 3′UTR regulates viral RNA replication. The CSFV E2 and 3′UTR synergistically modulate infectious virus production, viral genomic stability in vitro, and attenuation in swine. This work contributes to our understanding of the structure and function of the CSFV genome and virus pathogenicity and will be useful for the development of a novel CSF vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bai Y, Zhou K, Doudna JA (2013) Hepatitis C virus 3’UTR regulates viral translation through direct interactions with the host translation machinery. Nucleic acids Res 41:7861–7874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Becher P, Avalos Ramirez R, Orlich M, Cedillo Rosales S, Konig M, Schweizer M, Stalder H, Schirrmeier H, Thiel HJ (2003) Genetic and antigenic characterization of novel pestivirus genotypes: implications for classification. Virology 311:96–104

    Article  CAS  PubMed  Google Scholar 

  3. Behrens SE, Grassmann CW, Thiel HJ, Meyers G, Tautz N (1998) Characterization of an autonomous subgenomic pestivirus RNA replicon. J Virol 72:2364–2372

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Blome S, Meindl-Bohmer A, Loeffen W, Thuer B, Moennig V (2006) Assessment of classical swine fever diagnostics and vaccine performance. Rev Scie Techn 25:1025–1038

    Article  CAS  Google Scholar 

  5. Carlsen TH, Scheel TK, Ramirez S, Foung SK, Bukh J (2013) Characterization of hepatitis C virus recombinants with chimeric E1/E2 envelope proteins and identification of single amino acids in the E2 stem region important for entry. J Virol 87:1385–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Deng R, Brock KV (1993) 5’ and 3’ untranslated regions of pestivirus genome: primary and secondary structure analyses. Nucleic Acids Res 21:1949–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fan ZC, Dennis JC, Bird RC (2008) Bovine viral diarrhea virus is a suitable viral vector for stable expression of heterologous gene when inserted in between N(pro) and C genes. Virus Res 138:97–104

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez-Sainz I, Holinka LG, Gavrilov BK, Prarat MV, Gladue D, Lu Z, Jia W, Risatti GR, Borca MV (2009) Alteration of the N-linked glycosylation condition in E1 glycoprotein of Classical Swine Fever Virus strain Brescia alters virulence in swine. Virology 386:210–216

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez-Sainz I, Gladue DP, Holinka LG, O’Donnell V, Gudmundsdottir I, Prarat MV, Patch JR, Golde WT, Lu Z, Zhu J, Carrillo C, Risatti GR, Borca MV (2010) Mutations in classical swine fever virus NS4B affect virulence in swine. J Virol 84:1536–1549

    Article  CAS  PubMed  Google Scholar 

  10. Fletcher SP, Jackson RJ (2002) Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5’ untranslated region important for IRES function. J Virol 76:5024–5033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Friebe P, Boudet J, Simorre JP, Bartenschlager R (2005) Kissing-loop interaction in the 3’ end of the hepatitis C virus genome essential for RNA replication. J Virol 79:380–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Friis MB, Rasmussen TB, Belsham GJ (2012) Modulation of translation initiation efficiency in classical swine fever virus. J Virol 86:8681–8692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gallei A, Blome S, Gilgenbach S, Tautz N, Moennig V, Becher P (2008) Cytopathogenicity of classical Swine Fever virus correlates with attenuation in the natural host. J Virol 82:9717–9729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Greiser-Wilke I, Moennig V (2004) Vaccination against classical swine fever virus: limitations and new strategies. Anim Health Res Rev Conf Res Work Anim Dis 5:223–226

    Article  Google Scholar 

  15. Holinka LG, Fernandez-Sainz I, Sanford B, O’Donnell V, Gladue DP, Carlson J, Lu Z, Risatti GR, Borca MV (2014) Development of an improved live attenuated antigenic marker CSF vaccine strain candidate with an increased genetic stability. Virology 471–473:13–18

    Article  PubMed  Google Scholar 

  16. Hu D, Lv L, Gu J, Chen T, Xiao Y, Liu S (2016) Genetic diversity and positive selection analysis of classical swine fever virus envelope protein gene E2 in East China under C-strain vaccination. Front Microbiol 7:85

    PubMed  PubMed Central  Google Scholar 

  17. Hulst MM, Moormann RJ (1997) Inhibition of pestivirus infection in cell culture by envelope proteins E(rns) and E2 of classical swine fever virus: E(rns) and E2 interact with different receptors. J Gen Virol 78(Pt 11):2779–2787

    Article  CAS  PubMed  Google Scholar 

  18. Isken O, Grassmann CW, Yu H, Behrens SE (2004) Complex signals in the genomic 3’ nontranslated region of bovine viral diarrhea virus coordinate translation and replication of the viral RNA. RNA 10:1637–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leifer I, Ruggli N, Blome S (2013) Approaches to define the viral genetic basis of classical swine fever virus virulence. Virology 438:51–55

    Article  CAS  PubMed  Google Scholar 

  20. Li L, Wu R, Zheng F, Zhao C, Pan Z (2015) The N-terminus of classical swine fever virus (CSFV) nonstructural protein 2 modulates viral genome RNA replication. Virus Res 210:90–99

    Article  CAS  PubMed  Google Scholar 

  21. Liang D, Sainz IF, Ansari IH, Gil LH, Vassilev V, Donis RO (2003) The envelope glycoprotein E2 is a determinant of cell culture tropism in ruminant pestiviruses. J Gen Virol 84:1269–1274

    Article  CAS  PubMed  Google Scholar 

  22. Lindenbach BD, Thiel HJ, Rice CM (2007) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA (eds) Fundamental virology, 5th edn. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  23. Luo Y, Li S, Sun Y, Qiu HJ (2014) Classical swine fever in China: a minireview. Vet Microbiol 172:1–6

    Article  PubMed  Google Scholar 

  24. Mittelholzer C, Moser C, Tratschin JD, Hofmann MA (2000) Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol 74:293–308

    Article  CAS  Google Scholar 

  25. Moser C, Stettler P, Tratschin JD, Hofmann MA (1999) Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. J Virol 73:7787–7794

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pankraz A, Thiel HJ, Becher P (2005) Essential and nonessential elements in the 3’ nontranslated region of Bovine viral diarrhea virus. J Virol 79:9119–9127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poole TL, Wang C, Popp RA, Potgieter LN, Siddiqui A, Collett MS (1995) Pestivirus translation initiation occurs by internal ribosome entry. Virology 206:750–754

    Article  CAS  PubMed  Google Scholar 

  28. Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hygiene 27:493–497

    Google Scholar 

  29. Rijnbrand R, van der Straaten T, van Rijn PA, Spaan WJ, Bredenbeek PJ (1997) Internal entry of ribosomes is directed by the 5’ noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol 71:451–457

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Risager PC, Fahnoe U, Gullberg M, Rasmussen TB, Belsham GJ (2013) Analysis of classical swine fever virus RNA replication determinants using replicons. J Gen Virol 94:1739–1748

    Article  CAS  PubMed  Google Scholar 

  31. Risatti GR, Borca MV, Kutish GF, Lu Z, Holinka LG, French RA, Tulman ER, Rock DL (2005) The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J Virol 79:3787–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Risatti GR, Holinka LG, Carrillo C, Kutish GF, Lu Z, Tulman ER, Sainz IF, Borca MV (2006) Identification of a novel virulence determinant within the E2 structural glycoprotein of classical swine fever virus. Virology 355:94–101

    Article  CAS  PubMed  Google Scholar 

  33. Risatti GR, Holinka LG, Fernandez Sainz I, Carrillo C, Kutish GF, Lu Z, Zhu J, Rock DL, Borca MV (2007) Mutations in the carboxyl terminal region of E2 glycoprotein of classical swine fever virus are responsible for viral attenuation in swine. Virology 364:371–382

    Article  CAS  PubMed  Google Scholar 

  34. Risatti GR, Holinka LG, Fernandez Sainz I, Carrillo C, Lu Z, Borca MV (2007) N-Linked glycosylation status of classical swine fever virus strain Brescia E2 glycoprotein influences virulence in swine. J Virol 81:924–933

    Article  CAS  PubMed  Google Scholar 

  35. Ruggli N, Tratschin JD, Mittelholzer C, Hofmann MA (1996) Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol 70:3478–3487

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rumenapf T, Unger G, Strauss JH, Thiel HJ (1993) Processing of the envelope glycoproteins of pestiviruses. J Virol 67:3288–3294

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sainz IF, Holinka LG, Lu Z, Risatti GR, Borca MV (2008) Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine. Virology 370:122–129

    Article  CAS  PubMed  Google Scholar 

  38. Santagati MG, Maatta JA, Roytta M, Salmi AA, Hinkkanen AE (1998) The significance of the 3’-nontranslated region and E2 amino acid mutations in the virulence of Semliki Forest virus in mice. Virology 243:66–77

    Article  CAS  PubMed  Google Scholar 

  39. Song Y, Friebe P, Tzima E, Junemann C, Bartenschlager R, Niepmann M (2006) The hepatitis C virus RNA 3’-untranslated region strongly enhances translation directed by the internal ribosome entry site. J Virol 80:11579–11588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tamura T, Sakoda Y, Yoshino F, Nomura T, Yamamoto N, Sato Y, Okamatsu M, Ruggli N, Kida H (2012) Selection of classical swine fever virus with enhanced pathogenicity reveals synergistic virulence determinants in E2 and NS4B. J Virol 86:8602–8613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tamura T, Ruggli N, Nagashima N, Okamatsu M, Igarashi M, Mine J, Hofmann MA, Liniger M, Summerfield A, Kida H, Sakoda Y (2015) Intracellular membrane association of the N-terminal domain of classical swine fever virus NS4B determines viral genome replication and virulence. J Gen Virol 96:2623–2635

    Article  CAS  PubMed  Google Scholar 

  42. Thiel HJ, Stark R, Weiland E, Rumenapf T, Meyers G (1991) Hog cholera virus: molecular composition of virions from a pestivirus. J Virol 65:4705–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Thurner C, Witwer C, Hofacker IL, Stadler PF (2004) Conserved RNA secondary structures in Flaviviridae genomes. J Gen Virol 85:1113–1124

    Article  CAS  PubMed  Google Scholar 

  44. van Gennip HG, van Rijn PA, Widjojoatmodjo MN, de Smit AJ, Moormann RJ (2000) Chimeric classical swine fever viruses containing envelope protein E(RNS) or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response. Vaccine 19:447–459

    Article  PubMed  Google Scholar 

  45. van Oirschot JT (2003) Vaccinology of classical swine fever: from lab to field. Vet Microbiol 96:367–384

    Article  PubMed  Google Scholar 

  46. Velazquez-Salinas L, Risatti GR, Holinka LG, O’Donnell V, Carlson J, Alfano M, Rodriguez LL, Carrillo C, Gladue DP, Borca MV (2016) Recoding structural glycoprotein E2 in classical swine fever virus (CSFV) produces complete virus attenuation in swine and protects infected animals against disease. Virology 494:178–189

    Article  CAS  PubMed  Google Scholar 

  47. Wan C, Yi L, Yang Z, Yang J, Shao H, Zhang C, Pan Z (2010) The Toll-like receptor adaptor molecule TRIF enhances DNA vaccination against classical swine fever. Vet Immunol Immunopathol 137:47–53

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Chen S, Liao Y, Zhang E, Feng S, Yu S, Li LF, He WR, Li Y, Luo Y, Sun Y, Zhou M, Wang X, Munir M, Li S, Qiu HJ (2016) Mitogen-activated Protein Kinase Kinase 2 (MEK2), a Novel E2-interacting protein, promotes the growth of classical swine fever virus via attenuation of the JAK-STAT signaling pathway. J Virol 90:10271–10283

    Article  CAS  PubMed Central  Google Scholar 

  49. Wang Y, Wang Q, Lu X, Zhang C, Fan X, Pan Z, Xu L, Wen G, Ning Y, Tang F, Xia Y (2008) 12-nt insertion in 3′ untranslated region leads to attenuation of classic swine fever virus and protects host against lethal challenge. Virology 374:390–398

    Article  CAS  PubMed  Google Scholar 

  50. Wang Z, Nie Y, Wang P, Ding M, Deng H (2004) Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry. Virology 330:332–341

    Article  CAS  PubMed  Google Scholar 

  51. Weiland F, Weiland E, Unger G, Saalmuller A, Thiel HJ (1999) Localization of pestiviral envelope proteins E(rns) and E2 at the cell surface and on isolated particles. J Gen Virol 80(Pt 5):1157–1165

    Article  CAS  PubMed  Google Scholar 

  52. Wen G, Xue J, Shen Y, Zhang C, Pan Z (2009) Characterization of classical swine fever virus (CSFV) nonstructural protein 3 (NS3) helicase activity and its modulation by CSFV RNA-dependent RNA polymerase. Virus Res 141:63–70

    Article  CAS  PubMed  Google Scholar 

  53. Wu R, Li L, Zhao Y, Tu J, Pan Z (2016) Identification of two amino acids within E2 important for the pathogenicity of chimeric classical swine fever virus. Virus Res 211:79–85

    Article  CAS  PubMed  Google Scholar 

  54. Xiao M, Gao J, Wang Y, Wang X, Lu W, Zhen Y, Chen J, Li B (2004) Influence of a 12-nt insertion present in the 3’ untranslated region of classical swine fever virus HCLV strain genome on RNA synthesis. Virus Res 102:191–198

    Article  CAS  PubMed  Google Scholar 

  55. Yang Z, Wu R, Li RW, Li L, Xiong Z, Zhao H, Guo D, Pan Z (2012) Chimeric classical swine fever (CSF)-Japanese encephalitis (JE) viral replicon as a non-transmissible vaccine candidate against CSF and JE infections. Virus Res 165:61–70

    Article  CAS  PubMed  Google Scholar 

  56. Yu H, Grassmann CW, Behrens SE (1999) Sequence and structural elements at the 3’ terminus of bovine viral diarrhea virus genomic RNA: functional role during RNA replication. J Virol 73:3638–3648

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang H, Leng C, Feng L, Zhai H, Chen J, Liu C, Bai Y, Ye C, Peng J, An T, Kan Y, Cai X, Tian Z, Tong G (2015) A new subgenotype 2.1d isolates of classical swine fever virus in China, 2014. Infect Genet Evol 34:94–105

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by National Natural Science Foundation of China (31272585 and 31570152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zishu Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Li, L., Lei, L. et al. Synergistic roles of the E2 glycoprotein and 3′ untranslated region in the increased genomic stability of chimeric classical swine fever virus with attenuated phenotypes. Arch Virol 162, 2667–2678 (2017). https://doi.org/10.1007/s00705-017-3427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3427-9

Navigation