Skip to main content
Log in

Survey of molecular chaperone requirement for the biosynthesis of hamster polyomavirus VP1 protein in Saccharomyces cerevisiae

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A number of viruses utilize molecular chaperones during various stages of their life cycle. It has been shown that members of the heat-shock protein 70 (Hsp70) chaperone family assist polyomavirus capsids during infection. However, the molecular chaperones that assist the formation of recombinant capsid viral protein 1 (VP1)-derived virus-like particles (VLPs) in yeast remain unclear. A panel of yeast strains with single chaperone gene deletions were used to evaluate the chaperones required for biosynthesis of recombinant hamster polyomavirus capsid protein VP1. The impact of deletion or mild overexpression of chaperone genes was determined in live cells by flow cytometry using enhanced green fluorescent protein (EGFP) fused with VP1. Targeted genetic analysis demonstrated that VP1-EGFP fusion protein levels were significantly higher in yeast strains in which the SSZ1 or ZUO1 genes encoding ribosome-associated complex components were deleted. The results confirmed the participation of cytosolic Hsp70 chaperones and suggested the potential involvement of the Ydj1 and Caj1 co-chaperones and the endoplasmic reticulum chaperones in the biosynthesis of VP1 VLPs in yeast. Likewise, the markedly reduced levels of VP1-EGFP in Δhsc82 and Δhsp82 yeast strains indicated that both Hsp70 and Hsp90 chaperones might assist VP1 VLPs during protein biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goloubinoff P, De Los Rios P (2007) The mechanism of Hsp70 chaperones:(entropic) pulling the models together. Trends Biochem Sci 32:372–380

    Article  CAS  PubMed  Google Scholar 

  2. Mayer MP (2005) Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 153:1–46

    CAS  PubMed  Google Scholar 

  3. Arias CF, Isa P, Guerrero CA, Méndez E, Zárate S, López T, Espinosa R, Romero P, López S (2002) Molecular biology of rotavirus cell entry. Arch Med Res 33:356–361

    Article  CAS  PubMed  Google Scholar 

  4. Jindal S, Malkovsky M (1994) Stress responses to viral infection. Trends Microbiol 2:89–91

    Article  CAS  PubMed  Google Scholar 

  5. Kingston RE, Cowie A, Morimoto RI, Gwinn KA (1986) Binding of polyomavirus large T antigen to the human hsp70 promoter is not required for trans activation. Mol Cell Biol 6:3180–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sainis I, Angelidis C, Pagoulatos G, Lazaridis I (1994) The hsc70 gene which is slightly induced by heat is the main virus inducible member of the hsp70 gene family. FEBS Lett 355:282–286

    Article  CAS  PubMed  Google Scholar 

  7. Simon MC, Fisch TM, Benecke BJ, Nevins JR, Heintz N (1988) Definition of multiple, functionally distinct TATA elements, one of which is a target in the hsp70 promoter for E1A regulation. Cell 52:723–729

    Article  CAS  PubMed  Google Scholar 

  8. Cheng J, DeCaprio JA, Fluck MM, Schaffhausen BS (2009) Cellular transformation by simian virus 40 and murine polyoma virus T antigens. Semin Cancer Biol 19:218–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johne R, Buck CB, Allander T, Atwood WJ, Garcea RL, Imperiale MJ, Major EO, Ramqvist T, Norkin LC (2011) Taxonomical developments in the family Polyomaviridae. Arch Virol 156:1627–1634

    Article  CAS  PubMed  Google Scholar 

  10. Krumbholz A, Bininda-Emonds ORP, Wutzler P, Zell R (2009) Phylogenetics, evolution, and medical importance of polyomaviruses. Infect Genet Evol 9:784–799

    Article  CAS  PubMed  Google Scholar 

  11. Peretti A, FitzGerald PC, Bliskovsky V, Pastrana DV, Buck CB (2015) Genome sequence of a fish-associated polyomavirus, black sea bass (Centropristis striata) polyomavirus 1. Genome Announc 3:e01476–14

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cripe TP, Delos SE, Estes PA, Garcea RL (1995) In vivo and in vitro association of hsc70 with polyomavirus capsid proteins. J Virol 69:7807–7813

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chromy LR, Pipas JM, Garcea RL (2003) Chaperone-mediated in vitro assembly of Polyomavirus capsids. Proc Natl Acad Sci 100:10477–10482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liddington RC, Yan Y, Moulai J, Sahli R, Benjamin TL, Harrison SC (1991) Structure of simian virus 40 at 3.8-A resolution. Nature 354:278–284

    Article  CAS  PubMed  Google Scholar 

  15. Stehle T, Yan Y, Benjamin TL, Harrison SC (1994) Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369:160–163

    Article  CAS  PubMed  Google Scholar 

  16. Chen XS, Stehle T, Harrison SC (1998) Interaction of polyomavirus internal protein VP2 with the major capsid protein VP1 and implications for participation of VP2 in viral entry. EMBO J 17:3233–3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22:4346–4355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gilbert J, Benjamin T (2004) Uptake pathway of polyomavirus via ganglioside GD1a. J Virol 78:12259–12267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Low JA, Magnuson B, Tsai B, Imperiale MJ (2006) Identification of gangliosides GD1b and GT1b as receptors for BK virus. J Virol 80:1361–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Inoue T, Tsai B (2013) How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb Perspect Biol 5:a013250

    Article  PubMed  PubMed Central  Google Scholar 

  21. Geiger R, Andritschke D, Friebe S, Herzog F, Luisoni S, Heger T, Helenius A (2011) BAP31 and BiP are essential for dislocation of SV40 from the endoplasmic reticulum to the cytosol. Nat Cell Biol 13:1305–1314

    Article  CAS  PubMed  Google Scholar 

  22. Goodwin EC, Lipovsky A, Inoue T, Magaldi TG, Edwards APB, Van Goor KEY, Paton AW, Paton JC, Atwood WJ, Tsai B (2011) BiP and multiple DNAJ molecular chaperones in the endoplasmic reticulum are required for efficient simian virus 40 infection. MBio 2:e00101–e00111

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sasnauskas K, Buzaite O, Vogel F, Jandrig B, Razanskas R, Staniulis J, Scherneck S, Krüger DH, Ulrich R (1999) Yeast cells allow high-level expression and formation of polyomavirus-like particles. Biol Chem 380:381–386

    Article  CAS  PubMed  Google Scholar 

  24. Sasnauskas K, Bulavaite A, Hale A, Jin L, Knowles WA, Gedvilaite A, Dargevičiūte A, Bartkevičiūte D, Žvirblienė A, Staniulis J (2002) Generation of recombinant virus-like particles of human and non-human polyomaviruses in yeast Saccharomyces cerevisiae. Intervirology 45:308–317

    Article  CAS  PubMed  Google Scholar 

  25. Norkiene M, Stonyte J, Ziogiene D, Mazeike E, Sasnauskas K, Gedvilaite A (2015) Production of recombinant VP1-derived virus-like particles from novel human polyomaviruses in yeast. BMC Biotechnol 15:68

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sambrook J, Russell DW (2001) Molecular cloning a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  27. Slibinskas R, Samuel D, Gedvilaite A, Staniulis J, Sasnauskas K (2004) Synthesis of the measles virus nucleoprotein in yeast Pichia pastoris and Saccharomyces cerevisiae. J Biotechnol 107:115–124

    Article  CAS  PubMed  Google Scholar 

  28. Čiplys E, Sasnauskas K, Slibinskas R (2011) Overexpression of human calnexin in yeast improves measles surface glycoprotein solubility. FEMS Yeast Res 11:514–523

    Article  PubMed  Google Scholar 

  29. Siray H, Jandrig B, Voronkova T, Jia W, Zocher R, Arnold W, Scherneck S, Kru DH, Ulrich R (1999) Capsid protein-encoding genes of hamster polyomavirus and properties of the viral capsid. Virus Genes 18:39–47

    Article  CAS  PubMed  Google Scholar 

  30. Gedvilaite A, Dorn DC, Sasnauskas K, Pecher G, Bulavaite A, Lawatscheck R, Staniulis J, Dalianis T, Ramqvist T, Schönrich G (2006) Virus-like particles derived from major capsid protein VP1 of different polyomaviruses differ in their ability to induce maturation in human dendritic cells. Virology 354:252–260

    Article  CAS  PubMed  Google Scholar 

  31. Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  CAS  PubMed  Google Scholar 

  32. Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M (2014) Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11:319–324

    Article  CAS  PubMed  Google Scholar 

  33. Zvirbliene A, Samonskyte L, Gedvilaite A, Voronkova T, Ulrich R, Sasnauskas K (2006) Generation of monoclonal antibodies of desired specificity using chimeric polyomavirus-derived virus-like particles. J Immunol Methods 311:57–70

    Article  CAS  PubMed  Google Scholar 

  34. Colombo I, Ceciliani F, Ronchi S, Bartorelli A, Berra B (1998) cDNA cloning and Escherichia coli expression of UK114 tumor antigen. Biochim Biophys Acta (BBA) Gene Struct Expr 1442:49–59

    Article  CAS  Google Scholar 

  35. Ceciliani F, Faotto L, Negri A, Colombo I, Berra B, Bartorelli A, Ronchi S (1996) The primary structure of UK 114 tumor antigen. FEBS Lett 393:147–150

    Article  CAS  PubMed  Google Scholar 

  36. Sinha S, Rappu P, Lange SC, Mäntsälä P, Zalkin H, Smith JL (1999) Crystal structure of Bacillus subtilis YabJ, a purine regulatory protein and member of the highly conserved YjgF family. Proc Natl Acad Sci 96:13074–13079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Floer M, Bryant GO, Ptashne M (2008) HSP90/70 chaperones are required for rapid nucleosome removal upon induction of the GAL genes of yeast. Proc Natl Acad Sci 105:2975–2980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chernoff YO (2007) Stress and prions: lessons from the yeast model. FEBS Lett 581:3695–3701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Csermely P, Schnaider T, So C, Prohászka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    Article  CAS  PubMed  Google Scholar 

  40. Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta (BBA) Mol Cell Res 1823:624–635

    Article  CAS  Google Scholar 

  41. Werner-Washburne M, Stone DE, Craig EA (1987) Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae. Mol Cell Biol 7:2568–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17

    Article  CAS  PubMed  Google Scholar 

  43. Gautschi M, Mun A, Ross S, Rospert S (2002) A functional chaperone triad on the yeast ribosome. Proc Natl Acad Sci 99:4209–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang P, Gautschi M, Walter W, Rospert S, Craig EA (2005) The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat Struct Mol Biol 12:497–504

    Article  CAS  PubMed  Google Scholar 

  45. Jaiswal H, Conz C, Otto H, Wölfle T, Fitzke E, Mayer MP, Rospert S (2011) The chaperone network connected to human ribosome-associated complex. Mol Cell Biol 31:1160–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sahi C, Craig EA (2007) Network of general and specialty J protein chaperones of the yeast cytosol. Proc Natl Acad Sci 104:7163–7168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Praekelt UM, Meacock PA (1990) HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet MGG 223:97–106

    Article  CAS  PubMed  Google Scholar 

  48. Rossi JM, Lindquist S (1989) The intracellular location of yeast heat-shock protein 26 varies with metabolism. J Cell Biol 108:425–439

    Article  CAS  PubMed  Google Scholar 

  49. Haslbeck M, Braun N, Stromer T, Richter B, Model N, Weinkauf S, Buchner J (2004) Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J 23:638–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Skoneczna A, Miciałkiewicz A, Skoneczny M (2007) Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species. Free Radic Biol Med 42:1409–1420

    Article  CAS  PubMed  Google Scholar 

  51. Chen D-H, Huang Y, Liu C, Ruan Y, Shen W-H (2014) Functional conservation and divergence of J-domain-containing ZUO1/ZRF orthologs throughout evolution. Planta 239:1159–1173

    Article  CAS  PubMed  Google Scholar 

  52. Preissler S, Deuerling E (2012) Ribosome-associated chaperones as key players in proteostasis. Trends Biochem Sci 37(7):274–283

    Article  CAS  PubMed  Google Scholar 

  53. Peisker K, Chiabudini M, Rospert S (2010) The ribosome-bound Hsp70 homolog Ssb of Saccharomyces cerevisiae. Biochim Biophys Acta (BBA) Mol Cell Res 1803:662–672

    Article  CAS  Google Scholar 

  54. Weeks SA, Shield WP, Sahi C, Craig EA, Rospert S, Miller DJ (2010) A targeted analysis of cellular chaperones reveals contrasting roles for heat shock protein 70 in flock house virus RNA replication. J Virol 84:330–339

    Article  CAS  PubMed  Google Scholar 

  55. Walsh P, Bursać D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cyr DM, Lu X, Douglas MG (1992) Regulation of Hsp70 function by a eukaryotic DnaJ homolog. J Biol Chem 267:20927–20931

    CAS  PubMed  Google Scholar 

  57. Cyr DM, Douglas MG (1994) Differential regulation of Hsp70 subfamilies by the eukaryotic DnaJ homologue YDJ1. J Biol Chem 269:9798–9804

    CAS  PubMed  Google Scholar 

  58. Gong Y, Kakihara Y, Krogan N, Greenblatt J, Emili A, Zhang Z, Houry WA (2009) An atlas of chaperone–protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol Syst Biol 5:275

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mukai H, Shuntoh H, Chang CD, Asami M, Ueno M, Suzuki K, Kuno T (1994) Isolation and characterization of CAJ1, a novel yeast homolog of dnaJ. Gene 145:125–127

    Article  CAS  PubMed  Google Scholar 

  60. Gillies AT, Taylor R, Gestwicki JE (2012) Synthetic lethal interactions in yeast reveal functional roles of J protein co-chaperones. Mol Biosyst 8:2901–2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qian M, Cai D, Verhey KJ, Tsai B (2009) A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection. PLoS Pathog 5:e1000465

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kubota N, Inayoshi Y, Satoh N, Fukuda T, Iwai K, Tomoda H, Kohara M, Kataoka K, Shimamoto A, Furuichi Y (2012) HSC90 is required for nascent hepatitis C virus core protein stability in yeast cells. FEBS Lett 586:2318–2325

    Article  CAS  PubMed  Google Scholar 

  63. Shim HY, Quan X, Yi Y-S, Jung G (2011) Heat shock protein 90 facilitates formation of the HBV capsid via interacting with the HBV core protein dimers. Virology 410:161–169

    Article  CAS  PubMed  Google Scholar 

  64. Ujino S, Yamaguchi S, Shimotohno K, Takaku H (2009) Heat-shock protein 90 is essential for stabilization of the hepatitis C virus nonstructural protein NS3. J Biol Chem 284:6841–6846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hung J-J, Chung C-S, Chang W (2002) Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. J Virol 76:1379–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Social Fund under the Global Grant Measure (Grant No. VP1-3.1-SMM-07-K-02-038). We gratefully acknowledge Evaldas Ciplys for providing pFDC and pFGCNE1 vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Gedvilaite.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 160 kb)

Supplementary material 2 (PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valaviciute, M., Norkiene, M., Goda, K. et al. Survey of molecular chaperone requirement for the biosynthesis of hamster polyomavirus VP1 protein in Saccharomyces cerevisiae . Arch Virol 161, 1807–1819 (2016). https://doi.org/10.1007/s00705-016-2846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2846-3

Keywords

Navigation