Skip to main content

Advertisement

Log in

Proteomic analysis of the plasma membrane-movement tubule complex of cowpea mosaic virus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Cowpea mosaic virus forms tubules constructed from the movement protein (MP) in plasmodesmata (PD) to achieve cell-to-cell movement of its virions. Similar tubules, delineated by the plasma membrane (PM), are formed protruding from the surface of infected protoplasts. These PM-tubule complexes were isolated from protoplasts by immunoprecipitation and analysed for their protein content by tandem mass spectrometry to identify host proteins with affinity for the movement tubule. Seven host proteins were abundantly present in the PM-tubule complex, including molecular chaperonins and an AAA protein. Members of both protein families have been implicated in establishment of systemic infection. The potential role of these proteins in tubule-guided cell-cell transport is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Schoelz JE, Harries PA, Nelson RS (2011) Intracellular transport of plant viruses: finding the door out of the cell. Mol Plant 4:813–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Lent JWM, Schmitt-Keichinger C (2006) Viral movement proteins induce tubule formation in plant and insect cells. In: Baluska F, Volkmann, D., Barlow, P.W, editor. Cell-Cell Channels. New York

  3. Ritzenthaler C, Hofmann C (2007) Tubule-guided movement of plant viruses. Plant Cell Monograph

  4. van Lent JWM, Wellink J, Goldbach RW (1990) Evidence for the involvement of the 58K and 48K proteins in the intercellular movement of Cowpea mosaic virus. J Gen Virol 71:219–223

    Article  Google Scholar 

  5. Ritzenthaler C, Schmit AC, Michler P, Stussi-Garaud C, Pinck L (1995) Grapevine fanleaf nepovirus P38 putative movement protein is located on tubules in vivo. Mol Plant Microbe Interact 8:379–387

    Article  CAS  Google Scholar 

  6. Wellink J, van Lent JWM, Verver J, Sijen T, Goldbach RW et al (1993) The Cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. J Virol 67:3660–3664

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kasteel DTJ, Perbal MC, Boyer JC, Wellink J, Goldbach RW et al (1996) The movement proteins of cowpea mosaic virus and cauliflower mosaic virus induce tubular structures in plant and insect cells. J Gener Virol 77:2857–2864

    Article  CAS  Google Scholar 

  8. Niehl A, Heinlein M (2011) Cellular pathways for viral transport through plasmodesmata. Protoplasma 248:75–99

    Article  CAS  PubMed  Google Scholar 

  9. Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6:e7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L et al (2010) A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathogens 6:e1001119

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pouwels J, van der Velden T, Willemse J, Borst JW, van Lent JWM et al (2004) Studies on the origin and structure of tubules made by the movement protein of Cowpea mosaic virus. J Gen Virol 85:3787–3796

    Article  CAS  PubMed  Google Scholar 

  12. van Bokhoven H, Verver J, Wellink J, van Kammen A (1993) Protoplasts transiently expressing the 200K coding sequence of Cowpea mosaic virus B-RNA support replication of M-RNA. J Gener Virol 74(Pt 10):2233–2241

    Article  Google Scholar 

  13. van Lent JWM, Storms M, van der Meer F, Wellink J, Goldbach RW (1991) Tubular structures involved in movement of Cowpea mosaic virus are also formed in infected cowpea protoplasts. J Gener Virol 72:2615–2623

    Article  Google Scholar 

  14. Scheel J, Kreis TE (1998) Magnetic bead assay for characterization of microtubule-membrane interactions. Methods in Enzymology. pp 381–389

  15. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  16. Kariithi HM, Ince IA, Boeren S, Abd-Alla AM, Parker AG et al (2011) The salivary secretome of the tsetse fly Glossina pallidipes (Diptera: Glossinidae) infected by Salivary gland hypertrophy virus. PLoS Negl Trop Dis 5:e1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu J, Boeren S, de Vries SC, van Valenberg HJ, Vervoort J et al (2011) Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J Proteom 75:34–43

    Article  CAS  Google Scholar 

  18. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  19. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

  20. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vierling E (1991) The roles of heat shock proteins in plants. Ann Rev Plant Physiol Plant Mol Biol 42:579–620

    Article  CAS  Google Scholar 

  22. Hartl FU, Martin J, Neupert W (1992) Protein folding in the cell: The role of molecular chaperones Hsp70 and Hsp60. Ann Rev Biophys Biomol Struct 21:293–322

    Article  CAS  Google Scholar 

  23. Al-Whaibi MH (2011) Plant heat-shock proteins: A mini review. J King Saud Univ Sci 23:139–150

    Article  Google Scholar 

  24. Hildenbrand ZL, Bernal RA (2012) Chaperonin-mediated folding of viral proteins. Adv Exp Med Biol 726:307–324

    Article  CAS  PubMed  Google Scholar 

  25. Snyder L, Tarkowski HJ (2005) The N terminus of the head protein of T4 bacteriophage directs proteins to the GroEL chaperonin. J Mol Biol 345:375–386

    Article  CAS  PubMed  Google Scholar 

  26. Brizard JP, Carapito C, Delalande F, Van Dorsselaer A, Brugidou C (2006) Proteome analysis of plant-virus interactome: comprehensive data for virus multiplication inside their hosts. Mol Cell Proteom 5:2279–2297

    Article  CAS  Google Scholar 

  27. Fichtenbauer D, Xu XM, Jackson D, Kragler F (2012) The chaperonin CCT8 facilitates spread of tobamovirus infection. Plant Signal Behav 7:318–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patel S, Latterich M (1998) The AAA team: related ATPases with diverse functions. Trends Cell Biol 8:65–71

    Article  CAS  PubMed  Google Scholar 

  29. Santos L (2006) Molecular mechanisms of the AAA proteins in plants. In: Guevara-González RGT-P, I., editor. Advances in Agricultural and Food Biotechnology: 2006. Trivandrum: Research Signpost. pp 1–15

  30. Meyer H, Bug M, Bremer S (2012) Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14:117–123

    Article  CAS  PubMed  Google Scholar 

  31. Yamanaka K, Sasagawa Y, Ogura T (2012) Recent advances in p97/VCP/Cdc48 cellular functions. Biochimica et Biophysica Acta 1823:130–137

    Article  CAS  PubMed  Google Scholar 

  32. Latterich M, Frohlich KU, Schekman R (1995) Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82:885–893

    Article  CAS  PubMed  Google Scholar 

  33. Cheeseman IM, Desai A (2004) Cell division: AAAtacking the mitotic spindle. Curr Biol 14:R70–R72

    Article  CAS  PubMed  Google Scholar 

  34. Niehl A, Amari K, Gereige D, Brandner K, Mély Y et al (2012) Control of Tobacco mosaic virus movement protein fate by CELL-DIVISION-CYCLE protein48. Plant Physiol 160:2093–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barajas D, Jiang Y, Nagy PD (2009) A unique role for the host ESCRT proteins in replication of Tomato bushy stunt virus. PLoS Pathogens 5:e1000705

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hu CAA, Delauney AJ, Verma DPS (1992) A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kishor PBK, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang C, Zhang C, Dittman JD, Whitham SA (2009) Differential requirement of ribosomal protein S6 by plant RNA viruses with different translation initiation strategies. Virology 390:163–173

    Article  CAS  PubMed  Google Scholar 

  39. Soellick TR, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement protein NSm of Tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci USA 97:2373–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang Z, Andrianov VM, Han Y, Howell SH (2001) Identification of arabidopsis proteins that interact with the Cauliflower mosaic virus (CaMV) movement protein. Plant Mol Biol 47:663–675

    Article  CAS  PubMed  Google Scholar 

  41. Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S et al (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15:2058–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Electron microscopy was done at the Wageningen Electron Microscopy Center (WEMC). This research was supported by the Earth and Life Sciences Division (ALW) of NOW (grant 817.02.016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan W. M. van Lent.

Additional information

P. W. den Hollander and P. de S. G. Duarte contributed equally

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

den Hollander, P.W., de Sousa Geraldino Duarte, P., Bloksma, H. et al. Proteomic analysis of the plasma membrane-movement tubule complex of cowpea mosaic virus. Arch Virol 161, 1309–1314 (2016). https://doi.org/10.1007/s00705-016-2757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2757-3

Keywords

Navigation