Skip to main content
Log in

A critical role of LAMP-1 in avian reovirus P10 degradation associated with inhibition of apoptosis and virus release

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Avian reovirus (ARV) causes viral arthritis, chronic respiratory diseases, retarded growth and malabsorption syndrome. The ARV p10 protein, a viroporin responsible for the induction of cell syncytium formation and apoptosis, is rapidly degraded in host cells. However, the mechanism of p10 degradation and its relevance are still unclear. We report here the identification of cellular lysosome-associated membrane protein 1 (LAMP-1) as an interaction partner of p10 by yeast two-hybrid screening, immunoprecipitation and confocal microscopy assays. We found that rapid degradation of p10 was associated with ubiquitination. Importantly, ARV p10 degradation in host cells could be completely abolished by knockdown of LAMP-1 by siRNA, indicating that LAMP-1 is required for ARV p10 degradation in host cells. In contrast, overexpression of LAMP-1 facilitated p10 degradation. Furthermore, knockdown of LAMP-1 allowed p10 accumulation, enhancing p10-induced apoptosis and viral release. Thus, LAMP-1 plays a critical role in ARV p10 degradation associated with inhibition of apoptosis and viral release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ARV:

Avian reovirus

LAMP-1:

Lysosome-associated membrane protein 1

RNAi:

RNA interference

References

  1. Barry C, Duncan R (2009) Multifaceted sequence-dependent and -independent roles for reovirus FAST protein cytoplasmic tails in fusion pore formation and syncytiogenesis. J Virol 83:12185–12195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barry C, Key T, Haddad R, Duncan R (2010) Features of a spatially constrained cystine loop in the p10 FAST protein ectodomain define a new class of viral fusion peptides. J Biol Chem 285:16424–16433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beal RE, Toscano-Cantaffa D, Young P, Rechsteiner M, Pickart CM (1998) The hydrophobic effect contributes to polyubiquitin chain recognition. Biochemistry 37:2925–2934

    Article  CAS  PubMed  Google Scholar 

  4. Benavente J, Martinez-Costas J (2007) Avian reovirus: structure and biology. Virus Res 123:105–119

    Article  CAS  PubMed  Google Scholar 

  5. Bodelon G, Labrada L, Martinez-Costas J, Benavente J (2001) The avian reovirus genome segment S1 is a functionally tricistronic gene that expresses one structural and two nonstructural proteins in infected cells. Virology 290:181–191

    Article  CAS  PubMed  Google Scholar 

  6. Boehme KW, Hammer K, Tollefson WC, Konopka-Anstadt JL, Kobayashi T, Dermody TS (2013) Nonstructural protein sigma1s mediates reovirus-induced cell cycle arrest and apoptosis. J Virol 87:12967–12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bohley P (1996) Surface hydrophobicity and intracellular degradation of proteins. Biol Chem 377:425–435

    CAS  PubMed  Google Scholar 

  8. Chen JW, Madamanchi N, Madamanchi NR, Trier TT, Keherly MJ (2001) Lamp-1 is upregulated in human glioblastoma cell lines induced to undergo apoptosis. J Biomed Sci 8:365–374

    Article  CAS  PubMed  Google Scholar 

  9. Chulu JL, Lee LH, Lee YC, Liao SH, Lin FL, Shih WL, Liu HJ (2007) Apoptosis induction by avian reovirus through p53 and mitochondria-mediated pathway. Biochem Biophys Res Commun 356:529–535

    Article  CAS  PubMed  Google Scholar 

  10. Clancy EK, Duncan R (2009) Reovirus FAST protein transmembrane domains function in a modular, primary sequence-independent manner to mediate cell–cell membrane fusion. J Virol 83:2941–2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clarke P, Tyler KL (2003) Reovirus-induced apoptosis: a minireview. Apoptosis 8:141–150

    Article  CAS  PubMed  Google Scholar 

  12. Coffey CM, Sheh A, Kim IS, Chandran K, Nibert ML, Parker JS (2006) Reovirus outer capsid protein micro1 induces apoptosis and associates with lipid droplets, endoplasmic reticulum, and mitochondria. J Virol 80:8422–8438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cohnen A, Chiang SC, Stojanovic A, Schmidt H, Claus M, Saftig P, Janssen O, Cerwenka A, Bryceson YT, Watzl C (2013) Surface CD107a/LAMP-1 protects natural killer cells from degranulation-associated damage. Blood 122:1411–1418

    Article  CAS  PubMed  Google Scholar 

  14. Connolly JL, Rodgers SE, Clarke P, Ballard DW, Kerr LD, Tyler KL, Dermody TS (2000) Reovirus-induced apoptosis requires activation of transcription factor NF-kappaB. J Virol 74:2981–2989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Corcoran JA, Duncan R (2004) Reptilian reovirus utilizes a small type III protein with an external myristylated amino terminus to mediate cell–cell fusion. J Virol 78:4342–4351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eskelinen EL (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Aspects Med 27:495–502

    Article  CAS  PubMed  Google Scholar 

  17. Geng H, Zhang Y, Liu-Partanen Y, Vanhanseng Guo D, Wang Y, Liu M, Tong G (2009) Apoptosis induced by duck reovirus p10.8 protein in primary duck embryonated fibroblast and Vero E6 cells. Avian Dis 53:434–440

    Article  PubMed  Google Scholar 

  18. Gouvea VS, Schnitzer TJ (1982) Polymorphism of the migration of double-stranded RNA genome segments of avian reoviruses. J Virol 43:465–471

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gouvea VS, Schnitzer TJ (1982) Polymorphism of the genomic RNAs among the avian reoviruses. J Gen Virol 61(Pt 1):87–91

    Article  CAS  PubMed  Google Scholar 

  20. Hsu CJ, Wang CY, Lee LH, Shih WL, Chang CI, Cheng HL, Chulu JL, Ji WT, Liu HJ (2006) Development and characterization of monoclonal antibodies against avian reovirus sigma C protein and their application in detection of avian reovirus isolates. Avian Pathol 35:320–326

    Article  CAS  PubMed  Google Scholar 

  21. Hsu HW, Su HY, Huang PH, Lee BL, Liu HJ (2005) Sequence and phylogenetic analysis of P10- and P17-encoding genes of avian reovirus. Avian Dis 49:36–42

    Article  PubMed  Google Scholar 

  22. Key T, Duncan R (2014) A compact, multifunctional fusion module directs cholesterol-dependent homomultimerization and syncytiogenic efficiency of reovirus p10 FAST proteins. PLoS Pathog 10:e1004023

    Article  PubMed  PubMed Central  Google Scholar 

  23. Krzewski K, Gil-Krzewska A, Nguyen V, Peruzzi G, Coligan JE (2013) LAMP1/CD107a is required for efficient perforin delivery to lytic granules and NK-cell cytotoxicity. Blood 121:4672–4683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Labrada L, Bodelon G, Vinuela J, Benavente J (2002) Avian reoviruses cause apoptosis in cultured cells: viral uncoating, but not viral gene expression, is required for apoptosis induction. J Virol 76:7932–7941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin HY, Chuang ST, Chen YT, Shih WL, Chang CD, Liu HJ (2007) Avian reovirus-induced apoptosis related to tissue injury. Avian Pathol 36:155–159

    Article  CAS  PubMed  Google Scholar 

  26. Lin PY, Lee JW, Liao MH, Hsu HY, Chiu SJ, Liu HJ, Shih WL (2009) Modulation of p53 by mitogen-activated protein kinase pathways and protein kinase C delta during avian reovirus S1133-induced apoptosis. Virology 385:323–334

    Article  CAS  PubMed  Google Scholar 

  27. Lin PY, Liu HJ, Liao MH, Chang CD, Chang CI, Cheng HL, Lee JW, Shih WL (2010) Activation of PI 3-kinase/Akt/NF-kappaB and Stat3 signaling by avian reovirus S1133 in the early stages of infection results in an inflammatory response and delayed apoptosis. Virology 400:104–114

    Article  CAS  PubMed  Google Scholar 

  28. Lin PY, Liu HJ, Chang CD, Chang CI, Hsu JL, Liao MH, Lee JW, Shih WL (2011) Avian reovirus S1133-induced DNA damage signaling and subsequent apoptosis in cultured cells and in chickens. Arch Virol 156:1917–1929

    Article  CAS  PubMed  Google Scholar 

  29. Liu HJ, Lin PY, Lee JW, Hsu HY, Shih WL (2005) Retardation of cell growth by avian reovirus p17 through the activation of p53 pathway. Biochem Biophys Res Commun 336:709–715

    Article  CAS  PubMed  Google Scholar 

  30. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497

    Google Scholar 

  31. Rodriguez-Grille J, Busch LK, Martinez-Costas J, Benavente J (2014) Avian reovirus-triggered apoptosis enhances both virus spread and the processing of the viral nonstructural muNS protein. Virology 462–463:49–59

    Article  PubMed  Google Scholar 

  32. Salsman J, Top D, Boutilier J, Duncan R (2005) Extensive syncytium formation mediated by the reovirus FAST proteins triggers apoptosis-induced membrane instability. J Virol 79:8090–8100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schnitzer TJ, Ramos T, Gouvea V (1982) Avian reovirus polypeptides: analysis of intracellular virus-specified products, virions, top component, and cores. J Virol 43:1006–1014

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shih WL, Hsu HW, Liao MH, Lee LH, Liu HJ (2004) Avian reovirus sigmaC protein induces apoptosis in cultured cells. Virology 321:65–74

    Article  CAS  PubMed  Google Scholar 

  35. Shmulevitz M, Yameen Z, Dawe S, Shou J, O’Hara D, Holmes I, Duncan R (2002) Sequential partially overlapping gene arrangement in the tricistronic S1 genome segments of avian reovirus and Nelson Bay reovirus: implications for translation initiation. J Virol 76:609–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shmulevitz M, Salsman J, Duncan R (2003) Palmitoylation, membrane-proximal basic residues, and transmembrane glycine residues in the reovirus p10 protein are essential for syncytium formation. J Virol 77:9769–9779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shmulevitz M, Corcoran J, Salsman J, Duncan R (2004) Cell–cell fusion induced by the avian reovirus membrane fusion protein is regulated by protein degradation. J Virol 78:5996–6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Top D, Barry C, Racine T, Ellis CL, Duncan R (2009) Enhanced fusion pore expansion mediated by the trans-acting Endodomain of the reovirus FAST proteins. PLoS Pathog 5:e1000331

    Article  PubMed  PubMed Central  Google Scholar 

  39. Varela R, Benavente J (1994) Protein coding assignment of avian reovirus strain S1133. J Virol 68:6775–6777

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Varela R, Martinez-Costas J, Mallo M, Benavente J (1996) Intracellular posttranslational modifications of S1133 avian reovirus proteins. J Virol 70:2974–2981

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Z, Lin W, Li X, Cao H, Wang Y, Zheng SJ (2015) Critical role of eukaryotic elongation factor 1 alpha 1 (EEF1A1) in avian reovirus sigma-C-induced apoptosis and inhibition of viral growth. Arch Virol 160:1449–1461

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jingliang Su for his kind assistance. This work was supported by grants from the National Natural Science Foundation of China (#31272543 and #31430085) and Earmarked Fund for Modern Agro-Industry Technology Research System (#NYCYTX-41).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongqiang Wang or Shijun J. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., He, Z., Tang, J. et al. A critical role of LAMP-1 in avian reovirus P10 degradation associated with inhibition of apoptosis and virus release. Arch Virol 161, 899–911 (2016). https://doi.org/10.1007/s00705-015-2731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2731-5

Keywords

Navigation