Skip to main content
Log in

Immunity to tomato yellow leaf curl virus in transgenic tomato is associated with accumulation of transgene small RNA

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Gene silencing is a natural defense response of plants against invading RNA and DNA viruses. The RNA post-transcriptional silencing system has been commonly utilized to generate transgenic crop plants that are “immune” to plant virus infection. Here, we applied this approach against the devastating DNA virus tomato yellow leaf curl virus (TYLCV) in its host tomato (Solanum lycopersicum L.). To generate broad resistance to a number of different TYLCV viruses, three conserved sequences (the intergenic region [NCR], V1-V2 and C1-C2 genes) from the genome of the severe virus (TYLCV) were synthesized as a single insert and cloned into a hairpin configuration in a binary vector, which was used to transform TYLCV-susceptible tomato plants. Eight of 28 independent transgenic tomato lines exhibited immunity to TYLCV-Is and to TYLCV-Mld, but not to tomato yellow leaf curl Sardinia virus, which shares relatively low sequence homology with the transgene. In addition, a marker-free (nptII-deleted) transgenic tomato line was generated for the first time by Agrobacterium-mediated transformation without antibiotic selection, followed by screening of 1180 regenerated shoots by whitefly-mediated TYLCV inoculation. Resistant lines showed a high level of transgene-siRNA (t-siRNA) accumulation (22 % of total small RNA) with dominant sizes of 21 nt (73 %) and 22 nt (22 %). The t-siRNA displayed hot-spot distribution (“peaks”) along the transgene, with different distribution patterns than the viral-siRNA peaks observed in TYLCV-infected tomato. A grafting experiment demonstrated the mobility of 0.04 % of the t-siRNA from transgenic rootstock to non-transformed scion, even though scion resistance against TYLCV was not achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134

    Article  CAS  PubMed  Google Scholar 

  2. Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann Appl Biol 140:109–127

    Article  Google Scholar 

  3. Cohen S, Harpaz I (1964) Periodic rather than continual acquisition of a new tomato virus by its vector, the tobacco whitefly (Bemisia tabaci Gennadius). Entomol Exp Appl 7:155–166

    Article  Google Scholar 

  4. Czosnek H, Laterrot H (1997) A worldwide survey of tomato yellow leaf curl viruses. Arch Virol 142:1391–1406

    Article  CAS  PubMed  Google Scholar 

  5. Lapidot M, Legg JP, Wintermantel WM, Polston JE (2014) Management of whitefly-transmitted viruses in open-field production systems. Adv Virus Res 90:147–206

    Article  PubMed  Google Scholar 

  6. Cillo F, Palukaitis P (2014) Transgenic resistance. Adv Virus Res 90:35–146

    Article  PubMed  Google Scholar 

  7. Kunik T, Salomon R, Zamir D, Navot N, Zeidan M, Michelson I, Gafni Y, Czosnek H (1994) Transgenic tomato plants expressing the tomato yellow leaf curl virus capsid protein are resistant to the virus. Nat Biotechnol 12:500–504

    Article  CAS  Google Scholar 

  8. Bendahmane M, Gronenborn B (1997) Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Mol Biol 33:351–357

    Article  CAS  PubMed  Google Scholar 

  9. Noris E, Accotto GP, Tavazza R, Brunetti A, Crespi S, Tavazza M (1996) Resistance to tomato yellow leaf curl Geminivirus inNicotiana benthamianaPlants transformed with a truncated viral C1 gene. Virology 224:130–138

    Article  CAS  PubMed  Google Scholar 

  10. Antignus Y, Vunsh R, Lachman O, Pearlsman M, Maslenin L, Hananya U, Rosner A (2004) Truncated Rep gene originated from tomato yellow leaf curl virus-Israel [Mild] confers strain-specific resistance in transgenic tomato. Ann Appl Biol 144:39–44

    Article  Google Scholar 

  11. Brunetti A, Tavazza M, Noris E, Tavazza R, Caciagli P, Ancora G, Crespi S, Accotto GP (1997) High expression of truncated viral Rep protein confers resistance to tomato yellow leaf curl virus in transgenic tomato plants. Mol Plant Microbe Interact 10:571–579

    Article  CAS  Google Scholar 

  12. Lucioli A, Noris E, Brunetti A, Tavazza R, Ruzza V, Castillo AG, Bejarano ER, Accotto GP, Tavazza M (2003) Tomato yellow leaf curl Sardinia virus rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is overcome if virus-mediated transgene silencing is activated. J Virol 77:6785–6798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE (2004) Use of tomato yellow leaf curl virus (TYLCV) rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94:490–496

    Article  CAS  PubMed  Google Scholar 

  14. Fuentes A, Ramos PL, Fiallo E, Callard D, Sánchez Y, Peral R, Rodríguez R, Pujol M (2006) Intron–hairpin RNA derived from replication associated protein C1 gene confers immunity to tomato yellow leaf curl virus infection in transgenic tomato plants. Transgenic Res 15:291–304

    Article  CAS  PubMed  Google Scholar 

  15. Tamarzizt H, Chouchane S, Lengliz R, Maxwell D, Marrakchi M, Fakhfakh H, Gorsane F (2009) Use of tomato leaf curl virus (TYLCV) truncated Rep gene sequence to engineer TYLCV resistance in tomato plants. Acta Virol 53:99–104

    Article  PubMed  Google Scholar 

  16. Zrachya A, Kumar PP, Ramakrishnan U, Levy Y, Loyter A, Arazi T, Lapidot M, Gafni Y (2007) Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus. Transgenic Res 16:385–398

    Article  CAS  PubMed  Google Scholar 

  17. Reyes MI, Nash TE, Dallas MM, Ascencio-Ibáñez JT, Hanley-Bowdoin L (2013) Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol 87:9691–9706

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Fusaro AF, Matthew L, Smith NA, Curtin SJ, Dedic-Hagan J, Ellacott GA, Watson JM, Wang M-B, Brosnan C, Carroll BJ, Waterhouse PM (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7:1168–1175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Dry IB, Rigden JE, Krake LR, Mullineaux PM, Rezaian MA (1993) Nucleotide sequence and genome organization of tomato leaf curl geminivirus. J Gen Virol 74:147–151

    Article  CAS  PubMed  Google Scholar 

  20. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (2000) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35:105–140

    CAS  PubMed  Google Scholar 

  21. Raja P, Wolf JN, Bisaro DM (2010) RNA silencing directed against geminiviruses: Post-transcriptional and epigenetic components. Biochim Biophys Acta BBA Gene Regul Mech 1799:337–351

    Article  CAS  Google Scholar 

  22. Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  23. Melnyk CW, Molnar A, Baulcombe DC (2011) Intercellular and systemic movement of RNA silencing signals. EMBO J 30:3553–3563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhao D, Song G (2014) Rootstock-to-scion transfer of transgene-derived small interfering RNAs and their effect on virus resistance in nontransgenic sweet cherry. Plant Biotechnol J 12:1319–1328

    Article  CAS  PubMed  Google Scholar 

  25. Dunoyer P, Brosnan CA, Schott G, Wang Y, Jay F, Alioua A, Himber C, Voinnet O (2010) An endogenous, systemic RNAi pathway in plants. EMBO J 29:1699–1712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875

    Article  CAS  PubMed  Google Scholar 

  27. Yoo B-C, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell Online 16:1979–2000

    Article  CAS  Google Scholar 

  28. Kasai A, Sano T, Harada T (2013) Scion on a stock producing siRNAs of potato spindle tuber viroid (PSTVd) attenuates accumulation of the viroid. PLoS One 8:e57736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ali EM, Kobayashi K, Yamaoka N, Ishikawa M, Nishiguchi M (2013) Graft transmission of RNA silencing to non-transgenic scions for conferring virus resistance in tobacco. PLoS One 8:e63257

    Article  Google Scholar 

  30. Sonoda S, Nishiguchi M (2000) Graft transmission of post-transcriptional gene silencing: target specificity for RNA degradation is transmissible between silenced and non-silenced plants, but not between silenced plants. Plant J 21:1–8

    Article  CAS  PubMed  Google Scholar 

  31. McCormick S (1997) Transformation of tomato with Agrobacterium tumefaciens. In: Lindsey K (ed) Plant Tissue Culture Manual. Springer, Netherlands, pp 311–319

    Google Scholar 

  32. Barg R, Pilowsky M, Shabtai S, Carmi N, Szechtman AD, Dedicova B, Salts Y (1997) The TYLCV-tolerant tomato line MP-1 is characterized by superior transformation competence. J Exp Bot 48:1919–1923

    Article  CAS  Google Scholar 

  33. Lapidot M (2007) Screening for TYLCV-resistance plants using whitefly-mediated inoculation. In: Czosnek H (ed) Tomato yellow leaf curl virus dis. Springer, Netherlands, pp 329–342

    Chapter  Google Scholar 

  34. Gal-On A, Wolf D, Wang Y, Faure J-E, Pilowsky M, Zelcer A (1998) Transgenic resistance to cucumber mosaic virus in tomato: blocking of long-distance movement of the virus in lines harboring a defective viral replicase gene. Phytopathology 88:1101–1107

    Article  CAS  PubMed  Google Scholar 

  35. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  36. Leibman D, Wolf D, Saharan V, Zelcer A, Arazi T, Yoel S, Gaba V, Gal-On A (2011) A high level of transgenic viral small RNA is associated with broad potyvirus resistance in cucurbits. Mol Plant Microbe Interact 24:1220–1238

    Article  CAS  PubMed  Google Scholar 

  37. Kheyr-Pour A, Bendahmane M, Matzeit V, Accotto GP, Crespi S, Gronenborn B (1991) Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucl Acid Res 19:6763–6769

    Article  CAS  Google Scholar 

  38. Smith NA, Singh SP, Wang M-B, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Gene expression: total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  39. Chellappan P, Vanitharani R, Fauquet CM (2004) Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol 78:7465–7477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Abhary MK, Anfoka GH, Nakhla MK, Maxwell DP (2006) Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Arch Virol 151:2349–2363

    Article  CAS  PubMed  Google Scholar 

  41. Soler N, Plomer M, Fagoaga C, Moreno P, Navarro L, Flores R, Peña L (2012) Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnol J 10:597–608

    Article  CAS  PubMed  Google Scholar 

  42. Ribeiro SG, Lohuis H, Goldbach R, Prins M (2007) Tomato chlorotic mottle virus is a target of RNA silencing but the presence of specific short interfering RNAs does not guarantee resistance in transgenic plants. J Virol 81:1563–1573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    CAS  PubMed  Google Scholar 

  44. Herzog K, Flachowsky H, Deising HB, Hanke M-V (2012) Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.). Gene 498:41–49

    Article  CAS  PubMed  Google Scholar 

  45. Kapusi E, Hensel G, Coronado M-J, Broeders S, Marthe C, Otto I, Kumlehn J (2013) The elimination of a selectable marker gene in the doubled haploid progeny of co-transformed barley plants. Plant Mol Biol 81:149–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Li B, Li N, Duan X, Wei A, Yang A, Zhang J (2010) Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. J Biotechnol 145:206–213

    Article  CAS  PubMed  Google Scholar 

  47. Sripriya R, Sangeetha M, Parameswari C, Veluthambi B, Veluthambi K (2011) Improved Agrobacterium-mediated co-transformation and selectable marker elimination in transgenic rice by using a high copy number pBin19-derived binary vector. Plant Sci Int J Exp Plant Biol 180:766–774

    CAS  Google Scholar 

  48. Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy INBL (2012) Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. J Biosci 37:167–197

    Article  CAS  PubMed  Google Scholar 

  49. Bai Y, Guo Z, Wang X, Bai D, Zhang W (2009) Generation of double-virus-resistant marker-free transgenic potato plants. Prog Nat Sci 19:543–548

    Article  CAS  Google Scholar 

  50. Yang C-F, Chen K-C, Cheng Y-H, Raja JAJ, Huang Y-L, Chien W-C, Yeh S-D (2014) Generation of marker-free transgenic plants concurrently resistant to a DNA geminivirus and a RNA tospovirus. Sci Rep 4:5717

    PubMed Central  PubMed  Google Scholar 

  51. Gal-On A, Wolf D, Antignus Y, Patlis L, Ryu KH, Min BE, Pearlsman M, Lachman O, Gaba V, Wang Y, Shiboleth YM, Yang J, Zelcer A (2005) Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. Transgenic Res 14:81–93

    Article  CAS  PubMed  Google Scholar 

  52. Aregger M, Borah BK, Seguin J, Rajeswaran R, Gubaeva EG, Zvereva AS, Windels D, Vazquez F, Blevins T, Farinelli L, Pooggin MM (2012) Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog 8:e1002941

    Article  PubMed Central  PubMed  Google Scholar 

  53. Llave C (2010) Virus-derived small interfering RNAs at the core of plant-virus interactions. Trends Plant Sci 15:701–707

    Article  CAS  PubMed  Google Scholar 

  54. Morilla G, Krenz B, Jeske H, Bejarano ER, Wege C (2004) Tête à tête of tomato yellow leaf curl virus and tomato yellow leaf curl sardinia virus in single nuclei. J Virol 78:10715–10723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214

    Article  CAS  PubMed  Google Scholar 

  56. Yang X, Wang Y, Guo W, Xie Y, Xie Q, Fan L, Zhou X (2011) Characterization of small interfering RNAs derived from the geminivirus/betasatellite complex using deep sequencing. PLoS One 6:e16928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Miozzi L, Pantaleo V, Burgyán J, Accotto GP, Noris E (2013) Analysis of small RNAs derived from tomato yellow leaf curl Sardinia virus reveals a cross reaction between the major viral hotspot and the plant host genome. Virus Res 178:287–296

    Article  CAS  PubMed  Google Scholar 

  58. Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection[W][OA]. Plant Cell 22:481–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Molnár A, Csorba T, Lakatos L, Várallyay É, Lacomme C, Burgyán J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818

    Article  PubMed Central  PubMed  Google Scholar 

  60. Qi X, Bao FS, Xie Z (2009) Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One 4:e4971

    Article  PubMed Central  PubMed  Google Scholar 

  61. Rouphael Y, Schwarz D, Krumbein A, Colla G (2010) Impact of grafting on product quality of fruit vegetables. Sci Hortic 127:172–179

    Article  Google Scholar 

  62. Brosnan CA, Voinnet O (2011) Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr Opin Plant Biol 14:580–587

    Article  CAS  PubMed  Google Scholar 

  63. Himber C, Dunoyer P (2015) The tracking of intercellular small RNA movement. Methods Mol Biol Clifton NJ 1217:275–281

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge a contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 547/15. This work was supported by grants from Volcani Center ARO and Zeraim Gedera Seed Company (grant no.132-150110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Gal-On.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Diana Leibman, Shanmugam Prakash and Dalia Wolf have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leibman, D., Prakash, S., Wolf, D. et al. Immunity to tomato yellow leaf curl virus in transgenic tomato is associated with accumulation of transgene small RNA. Arch Virol 160, 2727–2739 (2015). https://doi.org/10.1007/s00705-015-2551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2551-7

Keywords

Navigation