Skip to main content
Log in

Identification and expression analysis of human endogenous retrovirus Y (HERV-Y) in various human tissues

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human endogenous retroviruses (HERVs) account for approximately 8 % of the human genome. To date, several HERV families have been identified in the human genome, with some being valid biomarkers for specific disease states. In this study, we have identified three HERV-Y elements in the human genome and characterized their structure and expression in various human tissues. New HERV-Y elements (HERV-Y101, HERV-Y102, and HERV-Y103) were detected on human chromosomes 8 and 13. In a pol-based phylogenetic tree, HERV-Y elements were closely grouped with HERV-I, -T, -E, and –R. The HERV-Y pol gene was expressed ubiquitously in all examined tissues, and it was dominantly expressed in the pons among the 12 different brain regions investigated. These results will allow future studies to elucidate the potential functional roles of HERVs in the brain and other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Katoh I, Kurata SI (2013) Association of endogenous retroviruses and long terminal repeats with human disorders. Front Oncol 3:234

    Article  PubMed Central  PubMed  Google Scholar 

  2. Laska MJ, Nissen KK, Nexo BA (2013) (Some) cellular mechanisms influencing the transcription of human endogenous retrovirus, HERV-Fc1. PLoS One 8:e53895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Tristem M (2000) Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol 74:3715–3730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Blikstad V, Benachenhou F, Sperber GO, Blomberg J (2008) Evolution of human endogenous retroviral sequences: a conceptual account. Cell Mol Life Sci 65:3348–3365

    Article  CAS  PubMed  Google Scholar 

  5. Urnovitz HB, Murphy WH (1996) Human endogenous retroviruses: nature, occurrence, and clinical implications in human disease. Clin Microbiol Rev 9:72–99

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Ruprecht K, Mayer J, Sauter M, Roemer K, Mueller-Lantzsch N (2008) Endogenous retroviruses and cancer. Cell Mol Life Sci 65:3366–3382

    Article  CAS  PubMed  Google Scholar 

  7. Zhao J, Rycaj K, Geng S, Li M, Plummer JB, Yin B, Liu H, Xu X, Zhang Y, Yan Y, Glynn SA, Dorsey TH, Ambs S, Johanning GL, Gu L, Wang-Johanning F (2011) Expression of human endogenous retrovirus type K envelope protein is a novel candidate prognostic marker for human breast cancer. Genes Cancer 2:914–922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sverdlov ED (1998) Perpetually mobile footprints of ancient infections in human genome. FEBS Lett 428:1–6

    Article  CAS  PubMed  Google Scholar 

  9. Ahn K, Kim HS (2009) Structural and quantitative expression analyses of HERV gene family in human tissues. Mol Cells 28:99–103

    Article  CAS  PubMed  Google Scholar 

  10. Reis BS, Jungbluth AA, Frosina D, Holz M, Ritter E, Nakayama E, Ishida T, Obata Y, Carver BS, Scher HI, Scardino PT, Slovin SF, Subudhi SK, Reuter VE, Savage C, Allison JP, Melamed J, Jager E, Ritter G, Old L, Gnjatic S (2013) Prostate cancer progression correlates with increased humoral immune response to a human endogenous retrovirus GAG protein. Clin Cancer Res 19:6112–6125

  11. Huh JW, Ha HS, Kim DS, Kim HS (2008) Placenta-restricted expression of LTR-derived NOS3. Placenta 29:602–608

    Article  CAS  PubMed  Google Scholar 

  12. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, Keith JC Jr, McCoy JM (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789

    Article  CAS  PubMed  Google Scholar 

  13. Dunn CA, Medstrand P, Mager DL (2003) An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon. Proc Natl Acad Sci USA 100:12841–12846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Jung YD, Lee JR, Kim YJ, Ha HS, Oh KB, Im GS, Choi BH, Kim HS (2013) Promoter activity analysis and methylation characterization of LTR elements of PERVs in NIH miniature pig. Genes Genet Syst 88:135–142

    Article  CAS  PubMed  Google Scholar 

  15. Chang NT, Yang WK, Huang HC, Yeh KW, Wu CW (2007) The transcriptional activity of HERV-I LTR is negatively regulated by its cis-elements and wild type p53 tumor suppressor protein. J Biomed Sci 14:211–222

    Article  CAS  PubMed  Google Scholar 

  16. McGee-Estrada K, Fan H (2007) Comparison of LTR enhancer elements in sheep beta retroviruses: insights into the basis for tissue-specific expression. Virus Genes 35:303–312

    Article  CAS  PubMed  Google Scholar 

  17. Lee WJ, Kwun HJ, Jang KL (2003) Analysis of transcriptional regulatory sequences in the human endogenous retrovirus W long terminal repeat. J Gen Virol 84:2229–2235

    Article  CAS  PubMed  Google Scholar 

  18. Goering W, Ribarska T, Schulz WA (2011) Selective changes of retroelement expression in human prostate cancer. Carcinogenesis 32:1484–1492

    Article  CAS  PubMed  Google Scholar 

  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Shin W, Lee J, Son SY, Ahn K, Kim HS, Han K (2013) Human-specific HERV-K insertion causes genomic variations in the human genome. PLoS One 8:e60605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucl Acids Res 36:W5–W9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Garcia-Etxebarria K, Jugo BM (2012) Detection and characterization of endogenous retroviruses in the horse genome by in silico analysis. Virology 434:59–67

    Article  CAS  PubMed  Google Scholar 

  23. Cohen CJ, Lock WM, Mager DL (2009) Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448:105–114

    Article  CAS  PubMed  Google Scholar 

  24. Bénit L, Dessen P, Heidmann T (2001) Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol 75:11709–11719

    Article  PubMed Central  PubMed  Google Scholar 

  25. Yi JM, Kim HS (2007) Expression and phylogenetic analyses of human endogenous retrovirus HC2 belonging to the HERV-T family in human tissues and cancer cells. J Hum Genet 52:285–296

    Article  CAS  PubMed  Google Scholar 

  26. van der Kuyl AC (2012) HIV infection and HERV expression: a review. Retrovirology 9:6

    Article  PubMed Central  PubMed  Google Scholar 

  27. Yi JM, Kim TH, Huh JW, Park KS, Jang SB, Kim HM, Kim HS (2004) Human endogenous retroviral elements belonging to the HERV-S family from human tissues, cancer cells, and primates: expression, structure, phylogeny and evolution. Gene 342:283–292

    Article  CAS  PubMed  Google Scholar 

  28. Weiss RA (2006) The discovery of endogenous retroviruses. Retrovirology 3:67

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lower R, Lower J, Kurth R (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci USA 93:5177–5184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Qari SH, Magre S, Garcia-Lerma JG, Hussain AI, Takeuchi Y, Patience C, Weiss RA, Heneine W (2001) Susceptibility of the porcine endogenous retrovirus to reverse transcriptase and protease inhibitors. J Virol 75:1048–1053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Garcia-Etxebarria K, Jugo BM (2010) Genome-wide detection and characterization of endogenous retroviruses in Bos taurus. J Virol 84:10852–10862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Domansky AN, Kopantzev EP, Snezhkov EV, Lebedev YB, Leib-Mosch C, Sverdlov ED (2000) Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett 472:191–195

    Article  CAS  PubMed  Google Scholar 

  33. Feuchter A, Mager D (1990) Functional heterogeneity of a large family of human LTR-like promoters and enhancers. Nucl Acids Res 18:1261–1270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ahn K, Han K, Kim H-S (2011) Quantitative analysis of the HERV pol gene in human tissues. Genes Genom 33:439–443

    Article  CAS  Google Scholar 

  35. Berkhout B, Jebbink M, Zsíros J (1999) Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol 73:2365–2375

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Huang W-J, Liu Z-C, Wei W, Wang G-H, Wu J-G, Zhu F (2006) Human endogenous retroviral pol RNA and protein detected and identified in the blood of individuals with schizophrenia. Schizophr Res 83:193–199

    Article  PubMed  Google Scholar 

  37. Silver J, Maudru T, Fujita K, Repaske R (1993) An RT-PCR assay for the enzyme activity of reverse transcriptase capable of detecting single virions. Nucl Acids Res 21:3593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Yi JM, Kim HS (2007) Molecular phylogenetic analysis of the human endogenous retrovirus E (HERV-E) family in human tissues and human cancers. Genes Genet Syst 82:89–98

    Article  CAS  PubMed  Google Scholar 

  39. Kim HS, Yi JM, Hirai H, Huh JW, Jeong MS, Jang SB, Kim CG, Saitou N, Hyun BH, Lee WH (2006) Human endogenous retrovirus (HERV)-R family in primates: chromosomal location, gene expression, and evolution. Gene 370:34–42

    Article  CAS  PubMed  Google Scholar 

  40. Patzke S, Lindeskog M, Munthe E, Aasheim H-C (2002) Characterization of a novel human endogenous retrovirus, HERV-H/F, expressed in human leukemia cell lines. Virology 303:164–173

    Article  CAS  PubMed  Google Scholar 

  41. Christensen T, Dissing SP, Riemann H, Hansen H, Munch M, Haahr S, Møller-Larsen A (2000) Molecular characterization of HERV-H variants associated with multiple sclerosis. Acta Neurol Scand 101:229–238

    Article  CAS  PubMed  Google Scholar 

  42. Wang-Johanning F, Frost AR, Jian B, Epp L, Lu DW, Johanning GL (2003) Quantitation of HERV-K env gene expression and splicing in human breast cancer. Oncogene 22:1528–1535

    Article  CAS  PubMed  Google Scholar 

  43. Bénit L, De Parseval N, Casella J-F, Callebaut I, Cordonnier A, Heidmann T (1997) Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. J Virol 71:5652–5657

    PubMed Central  PubMed  Google Scholar 

  44. Kjeldbjerg AL, Villesen P, Aagaard L, Pedersen FS (2008) Gene conversion and purifying selection of a placenta-specific ERV-V envelope gene during simian evolution. BMC Evol Biol 8:266

    Article  PubMed Central  PubMed  Google Scholar 

  45. Karlsson H, Schroder J, Bachmann S, Bottmer C, Yolken RH (2004) HERV-W-related RNA detected in plasma from individuals with recent-onset schizophrenia or schizoaffective disorder. Mol Psychiatry 9:12–13

    Article  CAS  PubMed  Google Scholar 

  46. Yolken RH, Karlsson H, Yee F, Johnston-Wilson NL, Torrey EF (2000) Endogenous retroviruses and schizophrenia. Brain Res Brain Res Rev 31:193–199

    Article  CAS  PubMed  Google Scholar 

  47. Frank O, Giehl M, Zheng C, Hehlmann R, Leib-Mosch C, Seifarth W (2005) Human endogenous retrovirus expression profiles in samples from brains of patients with schizophrenia and bipolar disorders. J Virol 79:10890–10901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Antony JM, Ellestad KK, Hammond R, Imaizumi K, Mallet F, Warren KG, Power C (2007) The human endogenous retrovirus envelope glycoprotein, syncytin-1, regulates neuroinflammation and its receptor expression in multiple sclerosis: a role for endoplasmic reticulum chaperones in astrocytes. J Immunol 179:1210–1224

    Article  CAS  PubMed  Google Scholar 

  49. Kolmac CI, Mitrofanis J (1998) Patterns of brainstem projection to the thalamic reticular nucleus. J Comp Neurol 396:531–543

    Article  CAS  PubMed  Google Scholar 

  50. Kim HS, Ahn K, Kim DS (2008) Quantitative expression of the HERV-W env gene in human tissues. Arch Virol 153:1587–1591

    Article  CAS  PubMed  Google Scholar 

  51. Schmahmann JD, Pandya DN (1997) Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci 17:438–458

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a research program funded by the Korea Centers for Disease Control and Prevention (2013-E7200201; 4800-4845-301).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2015_2486_MOESM1_ESM.pptx

Figure S1 Alignment of the HERV-Y elements and amplification regions. The HERV-Y elements are similar, but the primer binding sites differ slightly. Thus, the three loci were differentially amplified. (A) The HERV-Y101 sequence was aligned with HERV-Y101 (chr8:39738865-39739004), HERV-Y102 (chr8:42418923-42419025), and HERV-Y103 (chr13:111846985-111847124). (B) The HERV-Y102 sequence was aligned with HERV-Y101 (chr8:39738640-39738742), HERV-Y102 (chr8:42419148-42419287), and HERV-Y103 (chr13:111846760-111846862). (C) The HERV-Y103 sequence was aligned with HERV-Y101 (chr8:39738794-39738927), HERV-Y102 (chr8:42419077-42419210), and HERV-Y103 (chr13:111846914-111847047). Blue shading indicates the primer binding sites. Sequences that overlap with the amplification regions are indicated by dots. “Amp.” indicates amplification regions. (PPTX 60 kb)

Supplementary material 2 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gim, JA., Han, K. & Kim, HS. Identification and expression analysis of human endogenous retrovirus Y (HERV-Y) in various human tissues. Arch Virol 160, 2161–2168 (2015). https://doi.org/10.1007/s00705-015-2486-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2486-z

Keywords

Navigation