Skip to main content
Log in

Genomic and phylogenetic characterization of Shuni virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Shuni virus (SHUV), a member of the genus Orthobunyavirus, has in a recent study been associated with neurological disease in horses in South Africa. After its first isolation in 1966 from an asymptomatic bovine, very little attention was given to the genetic characterisation of SHUV. The association of SHUV with severe neurological disease in several horses in South Africa prompted us to determine the full genome sequence of a horse neurovirulent isolate to compare it to other members of the genus Orthobunyavirus, as well as the partially sequenced genome of the prototype SHUV strain. The availability of a full genome sequence will facilitate the development of a reverse genetics system to study SHUV molecular biology and pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moore DL et al (1975) Arthropod-borne viral infections in man in Nigeria: 1964-1970. Ann Trop Med Parasitol 69:49–64

    PubMed  CAS  Google Scholar 

  2. Causey OR et al (1972) Isolations of Simbu-group viruses in Ibadan, Nigeria 1964-69, including the new types Sango, Shamonda, Sabo and Shuni. Ann Trop Med Parasitol 66(3):357–362

    PubMed  CAS  Google Scholar 

  3. Goller KV et al (2012) Schmallenberg virus as possible ancestor of Shamonda virus. Emerg Infect Dis 18(10):1644–1646

    Article  PubMed  PubMed Central  Google Scholar 

  4. van Eeden C et al (2012) Shuni virus as cause of neurologic disease in horses. Emerg Infect Dis 18(2):318–321

    Article  PubMed  PubMed Central  Google Scholar 

  5. Elliott RM (1990) Molecular biology of the Bunyaviridae. J Gen Virol 71(Pt 3):501–522

    Article  PubMed  CAS  Google Scholar 

  6. Fazakerley JK et al (1988) Organization of the middle RNA segment of snowshoe hare Bunyavirus. Virology 167(2):422–432

    Article  PubMed  CAS  Google Scholar 

  7. Fuller F, Bhown AS, Bishop DH (1983) Bunyavirus nucleoprotein, N, and a non-structural protein, NSS, are coded by overlapping reading frames in the S RNA. J Gen Virol 64(Pt 8):1705–1714

    Article  PubMed  CAS  Google Scholar 

  8. Saeed MF et al (2001) Phylogeny of the Simbu serogroup of the genus Bunyavirus. J Gen Virol 82:2173–2181

    PubMed  CAS  Google Scholar 

  9. Yanase T et al (2003) Sequence analysis of the medium RNA segment of three Simbu serogroup viruses, Akabane, Aino, and Peaton viruses. Virus Res 93(1):63–69

    Article  PubMed  CAS  Google Scholar 

  10. Ogawa Y et al (2007) Sequence determination and functional analysis of the Akabane virus (family Bunyaviridae) L RNA segment. Arch Virol 152(5):971–979

    Article  PubMed  CAS  Google Scholar 

  11. Briese T et al (2006) Batai and Ngari viruses: M segment reassortment and association with severe febrile disease outbreaks in East Africa. J Virol 80(11):5627–5630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Yanase T et al (2006) Genetic characterization of Batai virus indicates a genomic reassortment between orthobunyaviruses in nature. Arch Virol 151(11):2253–2260

    Article  PubMed  CAS  Google Scholar 

  13. Kobayashi T et al (2007) Genetic diversity and reassortments among Akabane virus field isolates. Virus Res 130(1–2):162–171

    Article  PubMed  CAS  Google Scholar 

  14. Saeed MF et al (2001) Jatobal virus is a reassortant containing the small RNA of Oropouche virus. Virus Res 77(1):25–30

    Article  PubMed  CAS  Google Scholar 

  15. Yanase T et al (2010) Genetic characterization of Aino and Peaton virus field isolates reveals a genetic reassortment between these viruses in nature. Virus Res 153(1):1–7

    Article  PubMed  CAS  Google Scholar 

  16. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8(3):275–282

    PubMed  CAS  Google Scholar 

  18. Tamura K et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3(5):418–426

    PubMed  CAS  Google Scholar 

  21. Eifan SA, Elliott RM (2009) Mutational analysis of the Bunyamwera orthobunyavirus nucleocapsid protein gene. J Virol 83(21):11307–11317

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Bridgen A et al (2001) Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. Proc Natl Acad Sci USA 98(2):664–669

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Muller R et al (1995) Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment. Am J Trop Med Hyg 53(4):405–411

    PubMed  CAS  Google Scholar 

  24. Varela M et al (2013) Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host. PLoS Pathog 9(1):e1003133

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Briese T, Kapoor V, Lipkin WI (2007) Natural M-segment reassortment in Potosi and Main Drain viruses: implications for the evolution of orthobunyaviruses. Arch Virol 152(12):2237–2247

    Article  PubMed  CAS  Google Scholar 

  26. Briese T, Rambaut A, Lipkin WI (2004) Analysis of the medium (M) segment sequence of Guaroa virus and its comparison to other orthobunyaviruses. J Gen Virol 85(Pt 10):3071–3077

    Article  PubMed  CAS  Google Scholar 

  27. Pollitt E et al (2006) Characterization of Maguari orthobunyavirus mutants suggests the nonstructural protein NSm is not essential for growth in tissue culture. Virology 348(1):224–232

    Article  PubMed  CAS  Google Scholar 

  28. Savji N et al (2011) Genomic and phylogenetic characterization of Leanyer virus, a novel orthobunyavirus isolated in northern Australia. J Gen Virol 92(Pt 7):1676–1687

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Pekosz A et al (1995) Protection from La Crosse virus encephalitis with recombinant glycoproteins: role of neutralizing anti-G1 antibodies. J Virol 69(6):3475–3481

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Reguera J, Weber F, Cusack S (2010) Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog 6(9):e1001101

    Article  PubMed  PubMed Central  Google Scholar 

  31. Elliott RM, Schmaljohn CS, Collett MS (1991) Bunyaviridae genome structure and gene expression. Curr Top Microbiol Immunol 169:91–141

    PubMed  CAS  Google Scholar 

  32. Fauquet CM, Fargette D (2005) International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol J 2:64

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Barr JN et al (2003) Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication. Virology 311(2):326–338

    Article  PubMed  CAS  Google Scholar 

  34. Barr JN, Wertz GW (2004) Bunyamwera bunyavirus RNA synthesis requires cooperation of 3’- and 5’-terminal sequences. J Virol 78(3):1129–1138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Kohl A et al (2006) Genetic elements regulating packaging of the Bunyamwera orthobunyavirus genome. J Gen Virol 87(Pt 1):177–187

    Article  PubMed  CAS  Google Scholar 

  36. Akashi H et al (1997) Sequence determination and phylogenetic analysis of the Akabane bunyavirus S RNA genome segment. J Gen Virol 78(Pt 11):2847–2851

    PubMed  CAS  Google Scholar 

  37. Matsumori Y et al (2002) Serological and genetic characterization of newly isolated Peaton virus in Japan. Brief report. Arch Virol 147(2):401–410

    Article  PubMed  CAS  Google Scholar 

  38. Lee E et al (2000) Mutagenesis of the signal sequence of yellow fever virus prM protein: enhancement of signalase cleavage In vitro is lethal for virus production. J Virol 74(1):24–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Botha EM et al (2008) Genetic determinants of virulence in pathogenic lineage 2 west nile virus strains. Emerg Infect Dis 14(2):222–230

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by the Global Disease Detection (GDD) programme of the Centres for Disease Control and Prevention (CDC), Atlanta, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marietjie Venter.

Additional information

Accession numbers: The GenBank accession numbers for SAE 18/09 are KC510272 for the S segment, KF153117 for the M segment and KF153118 for the L segment.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Eeden, C., Harders, F., Kortekaas, J. et al. Genomic and phylogenetic characterization of Shuni virus. Arch Virol 159, 2883–2892 (2014). https://doi.org/10.1007/s00705-014-2131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2131-2

Keywords

Navigation