Skip to main content
Log in

Molecular characterization of a new lytic bacteriophage isolated from cheese whey

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In this study, we isolated and characterized a lytic Lactococcus lactis bacteriophage from the sera of a failed fermentation. The phage was isolated and cultured in L. lactis subsp. cremoris in M17 medium. The isolated bacteriophage was characterized by multiplex PCR, pulsed-field electrophoresis, DNA restriction digestion, analysis of the N-terminal sequence of the phage major structural protein, transmission electron microscopy and sequencing and analysis of a conserved fragment of its genome. Analysis of the viral genome indicates that its genome is composed of a DNA strand of approximately 48 kb in length, and PCR and microscopy confirmed that IL-P1 belongs to the group of 936-type phages in the family Siphoviridae, which is the most abundant type of lactococcal virus in dairy products worldwide. To our knowledge, this is the first report of a virus within this family that has a presumptive genome larger than 40 kb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bogosian G (2006) Control of bacteriophage in commercial microbiology and fermentation facilities. In: Calendar R (ed) The bacteriophages, Oxford University Press, New York, pp 667–673

  2. Labrie SJ, Josephsen J, Neve H, Vogensen FK, Moineau S (2008) Morphology, genome sequence, and structural proteome of type phage P335 from Lactococcus lactis. Appl Environ Microbiol 74(15):4636–4644

    Article  PubMed  CAS  Google Scholar 

  3. McGrath S, Fitzgerald GF, van Sinderen D (2004) The impact of bacteriophage genomics. Curr Opin Biotechnol 15(2):94–99

    Article  PubMed  CAS  Google Scholar 

  4. Raiski A, Belyasova N (2009) Biodiversity of Lactococcus lactis bacteriophages in the Republic of Belarus. Int J Food Microbiol 130(1):1–5

    Article  PubMed  CAS  Google Scholar 

  5. Dinsmore PK, O’Sullivan DJ, Klaenhammer TR (1998) A leucine repeat motif in AbiA is required for resistance of Lactococcus lactis to phages representing three species. Gene 212(1):5–11

    Article  PubMed  CAS  Google Scholar 

  6. Madera C, Monjardin C, Suarez JE (2004) Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies. Appl Environ Microbiol 70(12):7365–7371

    Article  PubMed  CAS  Google Scholar 

  7. Josephsen J, Neve H: Bacteriophages and lactic acid bacteria (1998) In: Salminen S, Wright V, Ouwehand A (eds) Lactic Acid bacteria: microbiological and functional aspects, CRC Press, New York, pp 385–436

  8. Oliveira MR, Guimarães WV, Araújo EF, Borges AC (1995) Isolation and characterization of lactococcal bacteriophages from cheese whey. Revista de Microbiologia 26(1):01–05

    Google Scholar 

  9. Binetti AG, Capra ML, Alvarez MA, Reinheimer JA (2008) PCR method for detection and identification of Lactobacillus casei/paracasei bacteriophages in dairy products. Int J Food Microbiol 124(2):147–153

    Article  PubMed  CAS  Google Scholar 

  10. del Rio B, Binetti AG, Martin MC, Fernandez M, Magadan AH, Alvarez MA (2007) Multiplex PCR for the detection and identification of dairy bacteriophages in milk. Food Microbiol 24(1):75–81

    Article  PubMed  Google Scholar 

  11. Dupuis ME, Moineau S (2010) Genome organization and characterization of the virulent lactococcal phage 1358 and its similarities to Listeria phages. Appl Environ Microbiol 76(5):1623–1632

    Article  PubMed  CAS  Google Scholar 

  12. Hejnowicz MS, Golebiewski M, Bardowski J (2009) Analysis of the complete genome sequence of the lactococcal bacteriophage bIBB29. Int J Food Microbiol 131(1):52–61

    Article  PubMed  CAS  Google Scholar 

  13. Brussow H (2001) Phages of dairy bacteria. Annu Rev Microbiol 55:283–303

    Article  PubMed  CAS  Google Scholar 

  14. Mcgrath S, Van Sinderen D, Fitzgerald GF (2002) Bacteriophage-derived genetic tools for use in lactic acid bacteria. Int Dairy J 12(1):3–15

    Article  CAS  Google Scholar 

  15. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory

  16. Hull RR (1977) Methods for monitoring bacteriophage in cheese factories. Aust J Dairy Technol 6:63–64

    Google Scholar 

  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  PubMed  CAS  Google Scholar 

  18. Deveau H, Labrie SJ, Chopin MC, Moineau S (2006) Biodiversity and classification of lactococcal phages. Appl Environ Microbiol 72(6):4338–4346

    Article  PubMed  CAS  Google Scholar 

  19. Jarvis AW, Fitzgerald GF, Mata M, Mercenier A, Neve H, Powell IB, Ronda C, Saxelin M, Teuber M (1991) Species and type phages of lactococcal bacteriophages. Intervirology 32(1):2–9

    PubMed  CAS  Google Scholar 

  20. Braun V, Hertwig D, Neve H, Geis A, Teuber M (1989) Taxonomic differentiation of bacteriophages of Lactococcus lactis by electron microscopy, DNA-DNA hybridization, and protein profiles. J Gen Microbiol 135:2551–2560

    CAS  Google Scholar 

  21. Crutz-Le Coq AM, Cantele F, Lanzavecchia S, Marco S (2006) Insights into structural proteins of 936-type virulent lactococcal bacteriophages. Arch Virol 151(6):1039–1053

    Article  PubMed  CAS  Google Scholar 

  22. Lubbers MW, Waterfield NR, Beresford TP, Le Page RW, Jarvis AW (1995) Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl Environ Microbiol 61(12):4348–4356

    PubMed  CAS  Google Scholar 

  23. Haggaard-Ljungquist E, Jacobsen E, Rishovd S, Six EW, Nilssen O, Sunshine MG, Lindqvist BH, Kim K-J, Barreiro V, Koonin EV, Calendar R (1995) Bacteriophage P2: genes involved in baseplate assembly. Virology 213:109–121

    Article  Google Scholar 

  24. Kageyama Y, Murayama M, Onodera T, Yamada S, Fukada H, Kudou M, Tsumoto K, Toyama Y, Kado S, Kubota K, Takeda S (2009) Observation of the membrane binding activity and domain structure of gpV, which comprises the tail spike of bacteriophage P2. Biochemistry 48:10129–10135

    Article  PubMed  CAS  Google Scholar 

  25. Yamashita E, Nakagawa A, Takahashi J, Tsunoda K, Yamada S, Takeda S (2011) The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure. Acta Crystallogr 67:837–841

    Google Scholar 

  26. Crutz-Le Coq AM, Cesselin B, Commissaire J, Anba J (2002) Sequence analysis of the lactococcal bacteriophage bIL170: insights into structural proteins and HNH endonucleases in dairy phages. Microbiology 148(4):985–1001

    PubMed  CAS  Google Scholar 

  27. Chandry PS, Moore SC, Boyce JD, Davidson BE, Hillier AJ (1977) Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1. Mol Microbiol 26(1):49–64

    Article  Google Scholar 

  28. Loof M, Lembke J, Teuber M (1983) Characterization of the genome of the Streptococcus lactis subsp. diacetylactis bacteriophage P008 wide-spread in German cheese factories. Syst Appl Microbiol 4:413–423

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Nucleus of Microscopy and Microanalysis (NMM) and the Nucleus of Biomolecules (NuBio) of the Federal University of Viçosa, for providing materials and technical support. This study was supported by grants from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and a Master fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) to MRE. The funders had no role in the study design, data collection, analysis, decision to publish, or preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. De Paula.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eller, M.R., Dias, R.S., De Moraes, C.A. et al. Molecular characterization of a new lytic bacteriophage isolated from cheese whey. Arch Virol 157, 2265–2272 (2012). https://doi.org/10.1007/s00705-012-1432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1432-6

Keywords

Navigation