Skip to main content
Log in

Isolation and Characterization of a Novel Virulent Phage of Lactobacillus casei ATCC 393

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

A new virulent phage (Lcb) of Lactobacillus casei ATCC 393 was isolated from Chinese sauerkraut. It was specific to L. casei ATCC 393. Electron micrograph revealed that it had an icosahedral head (60.2 ± 0.8 nm in diameter) and a long tail (251 ± 2.6 nm). It belonged to the Siphoviridae family. The genome of phage Lcb was estimated to be approximately 40 kb and did not contain cohesive ends. One-step growth kinetics of its lytic development revealed latent and burst periods of 75 and 45 min, respectively, with a burst size of 16 PFU per infected cell. The phage was able to survive in a pH range between 4 and 11. However, a treatment of 70 °C for 30 min and 75 % ethanol or isopropanol for 20 min was observed to inactivate phage Lcb thoroughly. The presence of both Ca2+ and Mg2+ showed a little influence on phage adsorption, but they were indispensable to gain complete lysis and improve plaque formation. The adsorption kinetics were similar on viable or nonviable cells, and high adsorption rates maintained between 10 and 37 °C. The highest adsorption rate was at 30 °C. This study increased the knowledge on phages of L. casei. The characterization of phage Lcb is helpful to establish a basis for adopting effective strategies to control phage attack in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alatossava, T., Forsman, P., Mikkonen, M., & Vasala, A. (1991). Molecular biology of Lactobacillus phage LL-H. Finn Journal of Dairy Science, 49, 1–13.

    CAS  Google Scholar 

  • Barrangou, R., & Horvath, P. (2012). CRISPR: new horizons in phage resistance and strain identification. Annual Review of Food Science and Technology, 3, 143–162.

    Article  CAS  PubMed  Google Scholar 

  • Brussow, H., & Hendrix, R. W. (2002). Phage genomics: Small is beautiful. Cell, 108(1), 13–16.

    Article  CAS  PubMed  Google Scholar 

  • Brussow, H., & Suarez, J. E. (2006). Lactobacillus phages. In R. Calendar & S. T. Abedon (Eds.), The bacteriophages (pp. 653–666). New York: Oxford University Press.

    Google Scholar 

  • Cai, H., Thompson, R., Budinich, M. F., Broadbent, J. R., & Steele, J. L. (2009). Genome sequence and comparative genome analysis of Lactobacillus casei: Insights into their niche-associated evolution. Genome Biology Evolution, 1, 239–257.

    Article  PubMed Central  PubMed  Google Scholar 

  • Capra, M. L., Quiberoni, A., & Reinheimer, J. A. (2004). Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages. Letters in Applied Microbiology, 38(6), 499–504.

    Article  CAS  PubMed  Google Scholar 

  • Capra, M. L., Quiberoni, A., & Reinheimer, J. (2006). Phages of Lactobacillus casei/paracasei: Response to environmental factors and interaction with collection and commercial strains. Journal of Applied Microbiology, 100(2), 334–342.

    Article  CAS  PubMed  Google Scholar 

  • Casey, E., Mahony, J., Neve, H., Noben, J.-P., Dal Bello, F., & van Sinderen, D. (2015). Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1. Applied and Environmental Microbiology, 81(4), 1319–1326.

    Article  PubMed Central  PubMed  Google Scholar 

  • Czajkowski, R., Ozymko, Z., de Jager, V., Siwinska, J., Smolarska, A., Ossowicki, A., et al. (2015). Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages ΦPD10.3 and ΦPD23.1 infecting Pectinolytic Pectobacterium spp. and Dickeya spp. PLoS One, 10(3), e0119812.

    Article  PubMed Central  PubMed  Google Scholar 

  • Danis-Wlodarczyk, K., Olszak, T., Arabski, M., Wasik, S., Majkowska-Skrobek, G., Augustyniak, D., et al. (2015). Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 and their efficacy against Pseudomonas aeruginosa biofilm. PLoS One, 10(5), e0127603.

    Article  PubMed Central  PubMed  Google Scholar 

  • Desiere, F., Mahanivong, C., Hillier, A. J., Chandry, P. S., Davidson, B. E., & Brüssow, H. (2001). Comparative genomics of lactococcal phages: Insight from the complete genome sequence of Lactococcus lactis phage BK5-T. Virology, 283(2), 240–252.

    Article  CAS  PubMed  Google Scholar 

  • Dieterle, M. E., Bowman, C., Batthyany, C., Lanzarotti, E., Turjanski, A., Hatfull, G., & Piuri, M. (2014). Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis. Applied and Environmental Microbiology, 80(22), 7107–7121.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ebrecht, A. C., Guglielmotti, D. M., Tremmel, G., Reinheimer, J. A., & Suárez, V. B. (2010). Temperate and virulent Lactobacillus delbrueckii bacteriophages: Comparison of their thermal and chemical resistance. Food Microbiology, 27(2010), 515–520.

    Article  CAS  PubMed  Google Scholar 

  • Galdeano, C. M., de LeBlanc, A. D. M., Vinderola, G., Bonet, M. E., & Perdigon, G. (2007). Proposed model: Mechanisms of immunomodulation induced by probiotic bacteria. Clinical and Vaccine Immunology, 14(5), 485–492.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia, P., Ladero, V., & Suarez, J. E. (2003). Analysis of the morphogenetic cluster and genome of the temperate Lactobacillus casei bacteriophage A2. Archives of Virology, 148(6), 1051–1070.

    Article  CAS  PubMed  Google Scholar 

  • Hendrix, R. W. (2003). Bacteriophage genomics. Current Opinion in Microbiology, 6(5), 506–511.

    Article  CAS  PubMed  Google Scholar 

  • Herrero, M., de los Reyes-Gavilán, C. G., Caso, J. L., & Suárez, J. E. (1994). Characterization of ø393-A2, a bacteriophage that infects Lactobacillus casei. Microbiology, 140(10), 2585–2590.

    Article  Google Scholar 

  • Hultberg, A., Tremblay, D. M., de Haard, H., Verrips, T., Moineau, S., Hammarström, L., & Marcotte, H. (2007). Lactobacilli expressing llama VHH fragments neutralise Lactococcus phages. BMC Biotechnology, 58(7), 1–7.

    Google Scholar 

  • Jones, D. T., Shirley, M., Wu, X., & Keis, S. (2000). Bacteriophage infections in the industrial acetone butanol (AB) fermentation process. Journal of Molecular Microbiology and Biotechnology, 2(1), 21–26.

    CAS  PubMed  Google Scholar 

  • Kawase, M., He, F., Kubota, A., Harata, G., & Hiramatsu, M. (2010). Oral administration of lactobacilli from human intestinal tract protects mice against influenza virus infection. Letters in Applied Microbiology, 51(2010), 6–10.

    CAS  PubMed  Google Scholar 

  • Lo, T. C., Shih, T. C., Lin, C. F., Chen, H. W., & Lin, T. H. (2005). Complete genomic sequence of the temperate bacteriophage PhiAT3 isolated from Lactobacillus casei ATCC 393. Virology, 339(1), 42–55.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Z., Breidt, F., Fleming, H. P., Altermann, E., & Klaenhammer, T. R. (2003). Isolation and characterization of a Lactobacillus plantarum bacteriophage, ΦJL-1, from a cucumber fermentation. International Journal of Food Microbiology, 84(2), 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Marcó, M. B., Garneau, J. E., Tremblay, D., Quiberoni, A., & Moineau, S. (2012). Characterization of two virulent phages of Lactobacillus plantarum. Applied and Environmental Microbiology, 78(24), 8719–8734.

    Article  Google Scholar 

  • Marcó, M. B., Garneau, J. E., Tremblay, D., Quiberoni, A., & Moineau, S. (2015). Characterization of two virulent phages of Lactobacillus plantarum. Applied and Environmental Microbiology, 78(24), 8719–8734.

    Article  Google Scholar 

  • Marranzino, G., Villena, J., Salva, S., & Alvarez, S. (2012). Stimulation of macrophages by immunobiotic Lactobacillus strains: influence beyond the intestine altract. Microbiology and Immunology, 56(11), 771–781.

    Article  CAS  PubMed  Google Scholar 

  • Mercanti, D. J., Ackermann, H.-W., & Quiberoni, A. (2015). Characterization of two temperate Lactobacillus paracasei bacteriophages: Morphology, kinetics and adsorption. Intervirology, 58, 49–56.

    Article  CAS  PubMed  Google Scholar 

  • Moineau, S., & Levesque, C. (2005). Control of bacteriophages in industrial fermentations. In E. Kutter & A. Sulakvelidze (Eds.), Bacteriophages: Biology and applications (pp. 285–296). Boca Raton: CRC Press.

    Google Scholar 

  • Moscoso, M., & Suárez, J. E. (2000). Characterization of the DNA replication module of bacteriophage A2 and use of its origin of replication as a defense against infection during milk fermentation by Lactobacillus casei. Virology, 273(1), 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Pringsulaka, O., Patarasinpaiboon, N., Suwannasai, N., Atthakor, W., & Rangsiruji, A. (2011). Isolation and characterisation of a novel Podoviridae phage infecting Weissella cibaria N 22 from Nham, a Thai fermented pork sausage. Food Microbiology, 28(3), 518–525.

    Article  PubMed  Google Scholar 

  • Quiberoni, A., Guglielmotti, D., Binetti, A., & Reinheimer, J. (2004). Characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages and the physicochemical analysis of phage adsorption. Journal of Applied Microbiology, 96(2), 340–351.

    Article  CAS  PubMed  Google Scholar 

  • Rochat, T., Bermudez-Humaran, L., Gratadoux, J.J., Fourage, C., Hoebler, C., Corthier, G., & Langella, P. (2007). Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependent catalase on DSS-induced colitis in mice. Microbial Cell Factories. http://www.biomedcentral.com/content/pdf/1472-6750-7-58.pdf. Accessed 17 September 2007.

  • Shimizu-Kadota, M., Sakurai, T., & Tsuchida, N. (1983). Prophage origin of a virulent phage appearing on fermentations of Lactobacillus casei S-1. Applied and Environmental Microbiology, 45(2), 669–674.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sturino, J. M., & Klaenhammer, T. R. (2006a). Engineered bacteriophage-defence systems in bioprocessing. Nature Reviews Microbiology, 4(5), 395–404.

    Article  CAS  PubMed  Google Scholar 

  • Sturino, J. M., & Klaenhammer, T. R. (2006b). Engineered bacteriophage-defence systems in bioprocessing. Nature Reviews Microbiology, 4(5), 395–404.

    Article  CAS  PubMed  Google Scholar 

  • Suárez, V., Zago, M., Giraffa, G., Reinheimer, J., & Quiberoni, A. (2009). Evidence for the presence of restriction/modification systems in Lactobacillus delbrueckii. Journal of Dairy Research, 76(4), 433–440.

    Article  PubMed  Google Scholar 

  • Trucco, V., Reinheimer, J., Quiberoni, A., & Sua ´rez., V. B. (2011). Adsorption of temperate phages of Lactobacillus delbrueckii strains and phage resistance linked to their cell diversity. Journal of Applied Microbiology, 110, 935–942.

    Article  CAS  PubMed  Google Scholar 

  • Villion, M., & Moineau, S. (2008). Bacteriophages of lactobacillus. Frontiers in bioscience (Landmark edition), 14, 1661–1683.

    Google Scholar 

  • Villion, M., & Moineau, S. (2009). Bacteriophages of lactobacillus. Front Bioscience, 14, 1661–1683.

    Article  CAS  Google Scholar 

  • Walakira, J. K., Carrias, A. A., Hossain, M. J., Jones, E., Terhune, J. S., & Liles, M. R. (2008). Identification and characterization of bacteriophages specific to the catfish pathogen, Edwardsiella ictaluri. Journal of Applied Microbiology, 105(6), 2133–2142.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Kong, J., Gao, C., Guo, T., & Liu, X. (2010). Isolation and characterization of a novel virulent phage (phiLdb) of Lactobacillus delbrueckii. International Journal of Food Microbiology, 137(1), 22–27.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, K., Takesue, S. (1972). The requirement for calcium in infection with Lactobacillus phage. The Journal of general virology, l17, 19–30.

    Article  Google Scholar 

  • Watanabe, K., Takesue, S., Ishibashi, K., & Nakahara, S. (1982). A computer simulation of the adsorption of Lactobacillus phage PL-1 to host cells: Some factors affecting the process. Agricultural and Biological Chemistry, 46(3), 697–702.

    Article  Google Scholar 

  • Watanabe, K., Takesue, S, Jin-Nai, K. & Yoshikawa, T. (1970). Bacteriophage active against the lactic acid beverage-producing bacterium Lactobacillus casei. Applied microbiology, 20, 409–415.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zago, M., Scaltriti, E., Rossetti, L., Guffanti, A., Armiento, A., Fornasari, M. E., & Giraffa, G. (2013). Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage ΦAQ113. Applied and Environmental Microbiology, 79(15), 4712–4718.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zago, M., Scaltriti, E., Rossetti, L., Guffanti, A., Armiento, A., Fornasari, M. E., et al. (2015). Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage ΦAQ113. Applied and Environmental Microbiology, 81(4), 1319–1326.

    Article  Google Scholar 

  • Zhongjing, Lu, & Breidt, Fred. (2015). Escherichia coli O157:H7 bacteriophage Φ241 isolated from an industrial cucumber fermentation at high acidity and salinity. Frontiers in Microbiology, 6(67), 1–10.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (NSFC) (No. 31302127) and “Young Talents” Project of Northeast Agricultural University (14QC22). We would like to thank Prof. Jos Seegers for kindly providing the L. casei ATCC 393.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyuan Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lan, Y., Jiao, W. et al. Isolation and Characterization of a Novel Virulent Phage of Lactobacillus casei ATCC 393. Food Environ Virol 7, 333–341 (2015). https://doi.org/10.1007/s12560-015-9206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-015-9206-4

Keywords

Navigation