Skip to main content
Log in

Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The severe acute respiratory syndrome coronavirus (SARS-CoV) RNA genome is replicated by a virus-encoded RNA replicase, the key component of which is the nonstructural protein 12 (nsp12). In this report, we describe the biochemical properties of a full-length recombinant SARS-CoV nsp12 RNA-dependent RNA polymerase (RdRp) capable of copying viral RNA templates. The purified SARS-CoV nsp12 showed both primer-dependent and primer-independent RNA synthesis activities using homopolymeric RNA templates. The RdRp activity was strictly dependent on Mn2+. The nsp12 preferentially copied homopolymeric pyrimidine RNA templates in the absence of an added oligonucleotide primer. It was also able to initiate de novo RNA synthesis from the 3’-ends of both the plus- and minus-strand genome of SARS-CoV, using the 3’-terminal 36- and 37-nt RNA, respectively. The in vitro RdRp assay system established with a full-length nsp12 will be useful for understanding the mechanisms of coronavirus replication and for the development of anti-SARS-CoV agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

SARS-CoV:

Severe acute respiratory syndrome coronavirus

RdRp:

RNA-dependent RNA polymerase

Nsp12:

Nonstructural protein 12

References

  1. Ahn DG, Lee W, Choi JK, Kim SJ, Plant EP, Almazan F, Taylor DR, Enjuanes L, Oh JW (2011) Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Res 91:1–10

    Article  PubMed  CAS  Google Scholar 

  2. Beerens N, Selisko B, Ricagno S, Imbert I, van der Zanden L, Snijder EJ, Canard B (2007) De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J Virol 81:8384–8395

    Article  PubMed  CAS  Google Scholar 

  3. Cazenave C, Uhlenbeck OC (1994) RNA template-directed RNA synthesis by T7 RNA polymerase. Proc Natl Acad Sci USA 91:6972–6976

    Article  PubMed  CAS  Google Scholar 

  4. Cheng A, Zhang W, Xie Y, Jiang W, Arnold E, Sarafianos SG, Ding J (2005) Expression, purification, and characterization of SARS coronavirus RNA polymerase. Virology 335:165–176

    Article  PubMed  CAS  Google Scholar 

  5. Clemente-Casares P, Lopez-Jimenez AJ, Bellon-Echeverria I, Encinar JA, Martinez-Alfaro E, Perez-Flores R, Mas A (2011) De novo polymerase activity and oligomerization of hepatitis C virus RNA-dependent RNA-polymerases from genotypes 1 to 5. PLoS One 6:e18515

    Article  PubMed  CAS  Google Scholar 

  6. De Rijk P, Wuyts J, De Wachter R (2003) RnaViz 2: an improved representation of RNA secondary structure. Bioinformatics 19:299–300

    Article  PubMed  Google Scholar 

  7. Goebel SJ, Taylor J, Masters PS (2004) The 3’ cis-acting genomic replication element of the severe acute respiratory syndrome coronavirus can function in the murine coronavirus genome. J Virol 78:7846–7851

    Article  PubMed  CAS  Google Scholar 

  8. Hong Z, Cameron CE, Walker MP, Castro C, Yao N, Lau JY, Zhong W (2001) A novel mechanism to ensure terminal initiation by hepatitis C virus NS5B polymerase. Virology 285:6–11

    Article  PubMed  CAS  Google Scholar 

  9. Huang Y, Beaudry A, McSwiggen J, Sousa R (1997) Determinants of ribose specificity in RNA polymerization: effects of Mn2+ and deoxynucleoside monophosphate incorporation into transcripts. Biochemistry 36:13718–13728

    Article  PubMed  CAS  Google Scholar 

  10. Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B (2006) A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 25:4933–4942

    Article  PubMed  CAS  Google Scholar 

  11. Jacobson AB, Zuker M (1993) Structural analysis by energy dot plot of a large mRNA. J Mol Biol 233:261–269

    Article  PubMed  CAS  Google Scholar 

  12. Kao CC, Singh P, Ecker DJ (2001) De novo initiation of viral RNA-dependent RNA synthesis. Virology 287:251–260

    Article  PubMed  CAS  Google Scholar 

  13. Kim YG, Yoo JS, Kim JH, Kim CM, Oh JW (2007) Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase. BMC Mol Biol 8:59

    Article  PubMed  CAS  Google Scholar 

  14. Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, Mommaas AM, Snijder EJ (2008) SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6:e226

    Article  PubMed  Google Scholar 

  15. Kusov YY, Gosert R, Gauss-Muller V (2005) Replication and in vivo repair of the hepatitis A virus genome lacking the poly(A) tail. J Gen Virol 86:1363–1368

    Article  PubMed  CAS  Google Scholar 

  16. Larsen GR, Semler BL, Wimmer E (1981) Stable hairpin structure within the 5’-terminal 85 nucleotides of poliovirus RNA. J Virol 37:328–335

    PubMed  CAS  Google Scholar 

  17. Luo G, Hamatake RK, Mathis DM, Racela J, Rigat KL, Lemm J, Colonno RJ (2000) De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. J Virol 74:851–863

    Article  PubMed  CAS  Google Scholar 

  18. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo M, McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL (2003) The Genome sequence of the SARS-associated coronavirus. Science 300:1399–1404

    Article  PubMed  CAS  Google Scholar 

  19. Masters PS (2006) The molecular biology of coronaviruses. Adv Virus Res 66:193–292

    Article  PubMed  CAS  Google Scholar 

  20. Nagy PD, Simon AE (1998) In vitro characterization of late steps of RNA recombination in turnip crinkle virus. I. Role of motif1-hairpin structure. Virology 249:379–392

    Article  PubMed  CAS  Google Scholar 

  21. Oh JW, Ito T, Lai MM (1999) A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA. J Virol 73:7694–7702

    PubMed  CAS  Google Scholar 

  22. Paul AV, Rieder E, Kim DW, van Boom JH, Wimmer E (2000) Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol 74:10359–10370

    Article  PubMed  CAS  Google Scholar 

  23. Plant EP, Rakauskaite R, Taylor DR, Dinman JD (2010) Achieving a golden mean: mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins. J Virol 84:4330–4340

    Article  PubMed  CAS  Google Scholar 

  24. Ranjith-Kumar CT, Kim YC, Gutshall L, Silverman C, Khandekar S, Sarisky RT, Kao CC (2002) Mechanism of de novo initiation by the hepatitis C virus RNA-dependent RNA polymerase: role of divalent metals. J Virol 76:12513–12525

    Article  PubMed  CAS  Google Scholar 

  25. Reigadas S, Ventura M, Sarih-Cottin L, Castroviejo M, Litvak S, Astier-Gin T (2001) HCV RNA-dependent RNA polymerase replicates in vitro the 3’ terminal region of the minus-strand viral RNA more efficiently than the 3’ terminal region of the plus RNA. Eur J Biochem 268:5857–5867

    Article  PubMed  CAS  Google Scholar 

  26. Sawicki SG, Sawicki DL, Siddell SG (2007) A contemporary view of coronavirus transcription. J Virol 81:20–29

    Article  PubMed  CAS  Google Scholar 

  27. Selisko B, Dutartre H, Guillemot JC, Debarnot C, Benarroch D, Khromykh A, Despres P, Egloff MP, Canard B (2006) Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases. Virology 351:145–158

    Article  PubMed  CAS  Google Scholar 

  28. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  PubMed  CAS  Google Scholar 

  29. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE (2003) Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004

    Article  PubMed  CAS  Google Scholar 

  30. Spagnolo JF, Hogue BG (2000) Host protein interactions with the 3’ end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication. J Virol 74:5053–5065

    Article  PubMed  CAS  Google Scholar 

  31. Spagnolo JF, Hogue BG (2001) Requirement of the poly(A) tail in coronavirus genome replication. Adv Exp Med Biol 494:467–474

    Article  PubMed  CAS  Google Scholar 

  32. Svitkin YV, Costa-Mattioli M, Herdy B, Perreault S, Sonenberg N (2007) Stimulation of picornavirus replication by the poly(A) tail in a cell-free extract is largely independent of the poly(A) binding protein (PABP). RNA 13:2330–2340

    Article  PubMed  CAS  Google Scholar 

  33. te Velthuis AJ, Arnold JJ, Cameron CE, van den Worm SH, Snijder EJ (2010) The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 38:203–214

    Article  Google Scholar 

  34. te Velthuis AJ, Arnold JJ, Cameron CE, van den Worm SH, Snijder EJ (2010) The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent. Nucleic Acids Res 38:203–214

    Article  Google Scholar 

  35. Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Weissbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J (2003) Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84:2305–2315

    Article  PubMed  CAS  Google Scholar 

  36. Tsai CH, Cheng CP, Peng CW, Lin BY, Lin NS, Hsu YH (1999) Sufficient length of a poly(A) tail for the formation of a potential pseudoknot is required for efficient replication of bamboo mosaic potexvirus RNA. J Virol 73:2703–2709

    PubMed  CAS  Google Scholar 

  37. van Dijk AA, Makeyev EV, Bamford DH (2004) Initiation of viral RNA-dependent RNA polymerization. J Gen Virol 85:1077–1093

    Article  PubMed  Google Scholar 

  38. van Hemert MJ, van den Worm SH, Knoops K, Mommaas AM, Gorbalenya AE, Snijder EJ (2008) SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog 4:e1000054

    Article  PubMed  Google Scholar 

  39. Xu X, Liu Y, Weiss S, Arnold E, Sarafianos SG, Ding J (2003) Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res 31:7117–7130

    Article  PubMed  CAS  Google Scholar 

  40. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

  41. Zust R, Miller TB, Goebel SJ, Thiel V, Masters PS (2008) Genetic interactions between an essential 3’ cis-acting RNA pseudoknot, replicase gene products, and the extreme 3’ end of the mouse coronavirus genome. J Virol 82:1214–1228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Seoul R&BD Program (Grant 10580), Technology Innovation Program (MKE 10035159) funded by the Ministry of Knowledge Economy (MKE, Korea), and in part by grants from the National Research Foundation of Korea (NRF-2011-0001236, 2011-0027650, and 2010-0029116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Won Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, DG., Choi, JK., Taylor, D.R. et al. Biochemical characterization of a recombinant SARS coronavirus nsp12 RNA-dependent RNA polymerase capable of copying viral RNA templates. Arch Virol 157, 2095–2104 (2012). https://doi.org/10.1007/s00705-012-1404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1404-x

Keywords