Skip to main content

Advertisement

Log in

A laboratory-attenuated vesicular stomatitis virus induces apoptosis and alters the cellular microRNA expression profile in BHK cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In the present study, we characterized the pathways by which a laboratory-attenuated vesicular stomatitis virus (La-VSV) induces apoptosis in BHK cells. It was found that La-VSV induced a loss of mitochondrial membrane potential (ΔΨm) and activated caspase-9 and -3, but not caspase-8, indicating that the induction of apoptosis by La-VSV may involve an intrinsic apoptotic pathway. Although aberrant expression of microRNAs (miRNAs) has been linked to viral infection, little is known about changes in the cellular miRNA expression profile following VSV infection. Here, we attempted to identify miRNA expression profiles in VSV-infected BHK cells using miRNA microarray. Data analysis revealed that 28 miRNAs consistently responded to VSV-infection, 12 of which were down-regulated and 16 of which were up-regulated. miR-146a of these miRNAs has been found to be up-regulated in LPS-stimulated monocytes and VSV-infected macrophages, suggesting that VSV-induced miR-146a expression occurs not only in immune cells but also in other host cells. We further found that miR-706 inhibited VSV-induced apoptosis by decreasing caspase-3 and -9 activation, suggesting that induction of miR-706 expression may be a novel strategy for survival of VSV, allowing it to escape the apoptosis response of the host. In summary, our results indicate that miRNAs might play important roles in VSV infection and that their aberrant expression could be involved in VSV pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  CAS  PubMed  Google Scholar 

  2. Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628

    Article  CAS  PubMed  Google Scholar 

  3. Gougeon ML, Olivier R, Garcia S, Guetard D, Dragic T, Dauguet C, Montagnier L (1991) Demonstration of an engagement process towards cell death by apoptosis in lymphocytes of HIV infected patients. C R Acad Sci III 312:529–537

    CAS  PubMed  Google Scholar 

  4. Moriishi K, Koura M, Matsuura Y (2002) Induction of Bad-mediated apoptosis by Sindbis virus infection: involvement of pro-survival members of the Bcl-2 family. Virology 292:258–271

    Article  CAS  PubMed  Google Scholar 

  5. Desprès P, Frenkiel MP, Ceccaldi PE, Duarte Dos Santos C, Deubel V (1998) Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses. J Virol 72:823–829

    PubMed  Google Scholar 

  6. Sumikoshi M, Hashimoto K, Kawasaki Y, Sakuma H, Suzutani T, Suzuki H, Hosoya M (2008) Human influenza virus infection and apoptosis induction in human vascular endothelial cells. J Med Virol 80:1072–1078

    Article  CAS  PubMed  Google Scholar 

  7. Lichty BD, Power AT, Stojdl DF, Bell JC (2004) Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10:210–216

    Article  CAS  PubMed  Google Scholar 

  8. Bi Z, Barna M, Komatsu T, Reiss CS (1995) Vesicular stomatitis virus infection of the central nervous system activates both innate and acquired immunity. J Virol 69:6466–6472

    CAS  PubMed  Google Scholar 

  9. Balachandran S, Porosnicu M, Barber GN (2001) Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, Ras, or myc function and involves the induction of apoptosis. J Virol 75:3474–3479

    Article  CAS  PubMed  Google Scholar 

  10. Koyama AH (1995) Induction of apoptotic DNA fragmentation by the infection of vesicular stomatitis virus. Virus Res 37:285–290

    Article  CAS  PubMed  Google Scholar 

  11. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  12. Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16:861–865

    Article  CAS  PubMed  Google Scholar 

  13. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  14. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  15. Lai EC (2005) miRNAs: whys and wherefores of miRNA-mediated regulation. Curr Biol 15:R458–R460

    Article  CAS  PubMed  Google Scholar 

  16. Gottwein E, Cullen BR (2008) Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3:375–387

    Article  CAS  PubMed  Google Scholar 

  17. Umbach JL, Cullen BR (2009) The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 23:1151–1164

    Article  CAS  PubMed  Google Scholar 

  18. Otsuka M, Jing Q, Georgel P, New L, Chen J, Mols J, Kang YJ, Jiang Z, Du X, Cook R, Das SC, Pattnaik AK, Beutler B, Han J (2007) Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27:123–134

    Article  CAS  PubMed  Google Scholar 

  19. Kopecky SA, Willingham MC, Lyles DS (2001) Matrix protein and another viral component contribute to induction of apoptosis in cells infected with vesicular stomatitis virus. J Virol 75:12169–12181

    Article  CAS  PubMed  Google Scholar 

  20. Yoshida M (2001) Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 19:475–496

    Article  CAS  PubMed  Google Scholar 

  21. Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian SH, Lucas A, McFadden G (2003) Poxviruses and immune evasion. Annu Rev Immunol 21:377–423

    Article  CAS  PubMed  Google Scholar 

  22. Everett H, McFadden G (1999) Apoptosis: an innate immune response to virus infection. Trends Microbiol 7:160–165

    Article  CAS  PubMed  Google Scholar 

  23. Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3:1013–1018

    Article  CAS  PubMed  Google Scholar 

  24. Hobbs JA, Hommel-Berrey G, Brahmi Z (2003) Requirement of caspase-3 for efficient apoptosis induction and caspase-7 activation but not viral replication or cell rounding in cells infected with vesicular stomatitis virus. Hum Immunol 64:82–92

    Article  CAS  PubMed  Google Scholar 

  25. Gadaleta P, Vacotto M, Coulombié F (2002) Vesicular stomatitis virus induces apoptosis at early stages in the viral cycle and does not depend on virus replication. Virus Res 86:87–92

    Article  CAS  PubMed  Google Scholar 

  26. Desforges M, Despars G, Bérard S, Gosselin M, McKenzie MO, Lyles DS, Talbot PJ, Poliquin L (2002) Matrix protein mutations contribute to inefficient induction of apoptosis leading to persistent infection of human neural cells by vesicular stomatitis virus. Virology 295:63–73

    Article  CAS  PubMed  Google Scholar 

  27. Kopecky SA, Lyles DS (2003) Contrasting effects of matrix protein on apoptosis in HeLa and BHK cells infected with vesicular stomatitis virus are due to inhibition of host gene expression. J Virol 77:4658–4669

    Article  CAS  PubMed  Google Scholar 

  28. Gaddy DF, Lyles DS (2007) Oncolytic vesicular stomatitis virus induces apoptosis via signaling through PKR, Fas, and Daxx. J Virol 81:2792–2804

    Article  CAS  PubMed  Google Scholar 

  29. Pearce AF, Lyles DS (2009) Vesicular stomatitis virus induces apoptosis primarily through Bak rather than Bax by inactivating Mcl-1 and Bcl-XL. J Virol 83:9102–9112

    Article  CAS  PubMed  Google Scholar 

  30. Gadaleta P, Perfetti X, Mersich S, Coulombié F (2005) Early activation of the mitochondrial apoptotic pathway in vesicular stomatitis virus-infected cells. Virus Res 109:65–69

    Article  CAS  PubMed  Google Scholar 

  31. Gaddy DF, Lyles DS (2005) Vesicular stomatitis viruses expressing wild-type or mutant M proteins activate apoptosis through distinct pathways. J Virol 79:4170–4179

    Article  CAS  PubMed  Google Scholar 

  32. Balachandran S, Roberts PC, Kipperman T, Bhalla KN, Compans RW, Archer DR, Barber GN (2000) Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/caspase-8 death signaling pathway. J Virol 74:1513–1523

    Article  CAS  PubMed  Google Scholar 

  33. Zhao JJ, Sun DG, Wang J, Liu SR, Zhang CY, Zhu MX, Ma X (2008) Retinoic acid downregulates microRNAs to induce abnormal development of spinal cord in spina bifida rat model. Childs Nerv Syst 24:485–492

    Article  PubMed  Google Scholar 

  34. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033

    Article  CAS  PubMed  Google Scholar 

  35. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    Article  CAS  PubMed  Google Scholar 

  36. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, Golub TR, Pieske B, Pu WT (2007) Altered microRNA expression in human heart disease. Physiol Genomics 31:367–373

    Article  CAS  PubMed  Google Scholar 

  37. Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, Cardinaud B, Maurin T, Barbry P, Baillat V, Reynes J, Corbeau P, Jeang KT, Benkirane M (2007) Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315:1579–1582

    Article  CAS  PubMed  Google Scholar 

  38. Cameron JE, Fewell C, Yin Q, McBride J, Wang X, Lin Z, Flemington EK (2008) Epstein–Barr virus growth/latency III program alters cellular microRNA expression. Virology 382:257–266

    Article  CAS  PubMed  Google Scholar 

  39. Wang FZ, Weber F, Croce C, Liu CG, Liao X, Pellett PE (2008) Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 82:9065–9074

    Article  CAS  PubMed  Google Scholar 

  40. Yeung ML, Bennasser Y, Myers TG, Jiang G, Benkirane M, Jeang KT (2005) Changes in microRNA expression profiles in HIV-1-transfected human cells. Retrovirology 2:81

    Article  PubMed  Google Scholar 

  41. Houzet L, Yeung ML, de Lame V, Desai D, Smith SM, Jeang KT (2008) MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology 5:118

    Article  PubMed  Google Scholar 

  42. Tamminga J, Kathiria P, Koturbash I, Kovalchuk O (2008) DNA damage-induced upregulation of miR-709 in the germline downregulates BORIS to counteract aberrant DNA hypomethylation. Cell Cycle 7:3731–3736

    CAS  PubMed  Google Scholar 

  43. Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, You Y (2008) hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res 1236:185–193

    Article  CAS  PubMed  Google Scholar 

  44. Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X (2009) MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol 183:2150–2158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Microarray experiments were performed by Kangchen Bio-tech, Shanghai, China. This study was supported by an “innovative start-up” project of Veterinary Research Institute, Academy of Military Medical Sciences (Project No. YCX0902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiping Xia or Hongwei Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, H., Liu, W., Liu, Q. et al. A laboratory-attenuated vesicular stomatitis virus induces apoptosis and alters the cellular microRNA expression profile in BHK cells. Arch Virol 155, 1643–1653 (2010). https://doi.org/10.1007/s00705-010-0749-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0749-2

Keywords

Navigation