Skip to main content
Log in

Retinoic acid downregulates microRNAs to induce abnormal development of spinal cord in spina bifida rat model

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objects

MicroRNAs have been found in the developing central nervous system, but little is known about their functions in development, especially in the abnormal development of spinal cord in spina bifida. To this end, we have studied the mechanism of microRNAs involved in the morphogenesis of the spinal cord in all-trans-retinoic acid (RA)-treated spina bifida rat fetus.

Materials and methods

Timed-pregnant rats were gavage-fed RA, and embryos were obtained on 13.5, 15.5, 17.5, and 19.5 days. MicroRNAs’ expression profile was analyzed by Northern blot. In situ apoptosis detection and microRNA in situ hybridization methods on sections of paraffin-embedded tissues were employed to explore the mechanism.

Conclusion

Administration of RA reduced the size of the spinal cord, probably as a consequence of increased cell death. There is a dramatic decrease in the expression of miR-9/9*, miR-124a and miR-125b, and Bcl2 and P53 as well in the sacral cord from E13.5 to E19.5 days post coitum. Our data showed that expression of these microRNAs was dysregulated in RA-treated spinal cord during embryonic development, suggesting that they may be involved in the development of the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clagett-Dame M, Plum LA (1997) Retinoid-regulated gene expression in neural development. Crit Rev Eukaryot Gene Expr 7:299–342

    PubMed  CAS  Google Scholar 

  2. Morriss-Kay GM, Sokolova N (1996) Embryonic development and pattern formation. FASEB J 10:961–968

    PubMed  CAS  Google Scholar 

  3. Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21:444–448

    Article  PubMed  CAS  Google Scholar 

  4. Niederreither K, Vermot J, Messaddeq N, Schuhbaur B, Chambon P, Dolle P (2001) Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse. Development 128:1019–1031

    PubMed  CAS  Google Scholar 

  5. Reijntjes S, Blentic A, Gale E, Maden M (2005) The control of morphogen signalling: regulation of the synthesis and catabolism of retinoic acid in the developing embryo. Dev Biol 285:224–237

    Article  PubMed  CAS  Google Scholar 

  6. Rosa FW, Wilk AL, Kelsey FO (1986) Teratogen update: vitamin A congeners. Teratology 33:355–364

    Article  PubMed  CAS  Google Scholar 

  7. Lammer EJ, Chen DT, Hoar RM, Agnish ND, Benke PJ, Braun JT, Curry CJ, Fernhoff PM, Grix AW Jr, Lott IT et al (1985) Retinoic acid embryopathy. N Engl J Med 313:837–841

    Article  PubMed  CAS  Google Scholar 

  8. McCaffery P, Drager UC (1994) Hot spots of retinoic acid synthesis in the developing spinal cord. Proc Natl Acad Sci U S A 91:7194–7197

    Article  PubMed  CAS  Google Scholar 

  9. Collins MD, Mao GE (1999) Teratology of retinoids. Annu Rev Pharmacol Toxicol 39:399–430

    Article  PubMed  CAS  Google Scholar 

  10. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281

    Article  PubMed  CAS  Google Scholar 

  11. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    Article  PubMed  Google Scholar 

  12. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  PubMed  Google Scholar 

  13. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP, Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308:833–838

    Article  PubMed  CAS  Google Scholar 

  14. Morriss GM (1972) Morphogenesis of the malformations induced in rat embryos by maternal hypervitaminosis A. J Anat 113:241–250

    PubMed  CAS  Google Scholar 

  15. Zhao JJ, Hua YJ, Sun DG, Meng XX, Xiao HS, Ma X (2006) Genome-wide microRNA profiling in human fetal nervous tissues by oligonucleotide microarray. Childs Nerv Syst 22:1419–1425

    Article  PubMed  Google Scholar 

  16. Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12:187–191

    Article  PubMed  CAS  Google Scholar 

  17. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  PubMed  CAS  Google Scholar 

  18. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24:857–864

    Article  PubMed  CAS  Google Scholar 

  19. Monticelli S, Ansel KM, Xiao C, Socci ND, Krichevsky AM, Thai TH, Rajewsky N, Marks DS, Sander C, Rajewsky K, Rao A, Kosik KS (2005) MicroRNA profiling of the murine hematopoietic system. Genome Biol 6:R71

    Article  PubMed  CAS  Google Scholar 

  20. Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R, Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21:1469–1477

    Article  PubMed  Google Scholar 

  21. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E, de Bruijn E, Horvitz HR, Kauppinen S, Plasterk RH (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311

    Article  PubMed  CAS  Google Scholar 

  22. Kosik KS, Krichevsky AM (2005) The Elegance of the microRNAs: a neuronal perspective. Neuron 47:779–782

    Article  PubMed  CAS  Google Scholar 

  23. McCaffery P, Drager UC (2000) Regulation of retinoic acid signaling in the embryonic nervous system: a master differentiation factor. Cytokine Growth Factor Rev 11:233–249

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Kamlesh Asotra for helpful discussions on the project design and Dr. Yu-Qiang Ding for valuable inputs in revising the manuscript. This work was supported by National Basic Research Program of China (2007CB5119005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, JJ., Sun, DG., Wang, J. et al. Retinoic acid downregulates microRNAs to induce abnormal development of spinal cord in spina bifida rat model. Childs Nerv Syst 24, 485–492 (2008). https://doi.org/10.1007/s00381-007-0520-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-007-0520-5

Keywords

Navigation