Skip to main content
Log in

Molecular characterisation and recent evolution of myxoma virus in Spain

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Myxoma virus and the European rabbit are one of the best-studied examples of coevolution of pathogen virulence and host resistance. Since the introduction of the virus in Spain in 1953, a decrease in its virulence has been observed; however, most strains are still considered highly virulent. To determine whether this attenuation is due to molecular differences, and to characterise the field strains in Spain and the genetic changes that have occurred since the introduction of the virus, we analysed 7,741 bp in 97 virus samples from 12 localities. We found an extremely low genetic variability and an absence of a geographic structure. We defined 35 haplotypes, none of which were identical to the original Lausanne strain. Three genetic groups were determined and were found to occur at different frequencies in different locations. Overall, virus evolution deviated from neutrality and did not conform to a strict molecular clock, probably due to the existence of a strong selective pressure that acts differently across the viral genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abrantes J, Esteves PJ, Carmo CR, Müller A, Thompson G, van der Loo W (2008) Genetic characterization of the chemokine receptor CXCR4 gene in lagomorphs: comparison between the families Ochotonidae and Leporidae. Int J Immunogenet 35:111–117

    Article  PubMed  CAS  Google Scholar 

  2. Alda F, Gaitero T, Alcaraz L, Zardoya R, Doadrio I, Suárez M (2007) Coevolución de los virus de la mixomatosis y de la enfermedad hemorrágica con el conejo (Oryctolagus cuniculus L., 1758) en la Península Ibérica. In: Ramírez L, Asensio B (eds) Proyectos de investigación en parques nacionales: 2003–2006. Organismo Autónomo de Parques Nacionales, Ministerio de Medio Ambiente, Madrid

  3. Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426

    Article  PubMed  Google Scholar 

  4. Babkin IV, Shchelkunov SN (2006) Time scale of poxvirus evolution. Mol Biol 40:16–19

    Article  CAS  Google Scholar 

  5. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  6. Bárcena J, Pagès-Manté A, March R, Morales M, Ramírez MA, Sánchez-Vizcaíno JM, Torres JM (2000) Isolation of an attenuated myxoma virus field strain that can confer protection against myxomatosis on contacts of vaccinates. Arch Virol 145:759–771

    Article  PubMed  Google Scholar 

  7. Best SM, Collins SV, Kerr PJ (2000) Coevolution of host and virus: cellular localization of virus in myxoma virus infection of resistant and susceptible European rabbits. Virology 277:76–91

    Article  PubMed  CAS  Google Scholar 

  8. Best SM, Kerr PJ (2000) Coevolution of host and virus: the pathogenesis of virulent and attenuated strains of myxoma virus in resistant and susceptible European rabbits. Virology 267:36–48

    Article  PubMed  CAS  Google Scholar 

  9. Cameron C, Hota-Mitchell S, Chen L, Barrett J, Cao JX, Macaulay C, Willer D, Evans D, McFadden G (1999) The complete DNA sequence of myxoma virus. Virology 264:298–318

    Article  PubMed  CAS  Google Scholar 

  10. Camus-Bouclainville C, Fiette L, Bouchiha S, Pignolet B, Counor D, Filipe C, Gelfi J, Messud-Petit F (2004) A virulence factor of myxoma virus colocalized with NF-κB in the nucleus and interferes with inflammation. J Virol 78:2510–2516

    Article  PubMed  CAS  Google Scholar 

  11. Castelloe J, Templeton AR (1994) Root probabilities for intraspecific gene trees under the neutral coalescent theory. Mol Phylogenet Evol 3:102–113

    Article  PubMed  CAS  Google Scholar 

  12. Corander J, Marttinen P, Sirén J, Tang J (2006) BAPS: Bayesian analysis of population structure, manual v, 4.1

  13. Corander J, Tang J (2007) Bayesian analysis of population structure based on linked molecular information. Math Biosci 205:19–31

    Article  PubMed  Google Scholar 

  14. Delibes-Mateos M, Ramírez E, Ferreras P, Villafuerte R (2008) Translocations as a risk for the conservation of European wild rabbit Oryctolagus cuniculus lineages. Oryx 42:259–264

    Article  Google Scholar 

  15. Drake JW (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88:7160–7164

    Article  PubMed  CAS  Google Scholar 

  16. Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    PubMed  CAS  Google Scholar 

  17. Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG (2003) Measurably evolving populations. Trends Ecol Evol 18:481–488

    Article  Google Scholar 

  18. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  19. Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276

    Article  PubMed  CAS  Google Scholar 

  20. Fenner F, Marshall ID (1955) Occurrence of attenuated strains of Myxoma virus in Europe. Nature 176:782–783

    Article  PubMed  CAS  Google Scholar 

  21. Fenner F, Marshall ID (1957) A comparison of the virulence for European rabbits (Oryctolagus cuniculus) of strains of myxoma virus recovered in the field in Australia, Europe and America. J Hyg 55:149–191

    Article  CAS  Google Scholar 

  22. Fenner F, Ratcliffe FN (1965) Myxomatosis. Cambridge University Press, Cambridge

    Google Scholar 

  23. Fenner F (1976) Classification and nomenclature of viruses. Second report of the International Committee on Taxonomy of Viruses. Intervirology 7:1–116

    Article  PubMed  CAS  Google Scholar 

  24. Fenner F (1983) Biological control as exemplified by smallpox eradication and myxomatosis. Proc R Soc Lond B 218:259–285

    Article  PubMed  CAS  Google Scholar 

  25. Fenner F, Fantini B (1999) Biological control of vertebrate pests: the history of myxomatosis; an experiment in evolution, 1st edn. CABI, Wallingford

    Google Scholar 

  26. Fu YX, Li WH (1993) Maximum likelihood estimation of population parameters. Genetics 134:1261–1270

    PubMed  CAS  Google Scholar 

  27. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  28. Futuyma DJ (1998) Evolutionary Biology. Sinauer Associates, Sunderland

    Google Scholar 

  29. Gubser C, Hue S, Kellam P, Smith GL (2004) Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85:105–117

    Article  PubMed  CAS  Google Scholar 

  30. Guerin JL, Gelfi J, Camus C, Delverdier M, Whisstock JC, Amardeihl MF, Py R, Bertagnoli S, Messud-Petit F (2001) Characterization and functional analysis of Serp3: a novel myxoma virus-encoded serpin involved in virulence. J Gen Virol 82:1407–1417

    PubMed  CAS  Google Scholar 

  31. Harpending HC (1994) Signature of ancient population-growth in a low-resolution mitochondrial-DNA mismatch distribution. Hum Biol 66:591–600

    PubMed  CAS  Google Scholar 

  32. Holmes EC (2004) The phylogeography of human viruses. Mol Ecol 13:745–756

    Article  PubMed  Google Scholar 

  33. Johnston JB, McFadden G (2003) Poxvirus immunomodulatory strategies: current perspectives. J Virol 77:6093–6100

    Article  PubMed  CAS  Google Scholar 

  34. Kass RE, Raftery AE (1995) Bayes Factors. J Am Stat Assoc 90:773–795

    Article  Google Scholar 

  35. Kerr P, McFadden G (2002) Immune responses to myxoma virus. Viral Immunol 15:229–246

    Article  PubMed  CAS  Google Scholar 

  36. Kerr PJ, Best SM (1998) Myxoma virus in rabbits. Rev Sci Tech 17:256–268

    PubMed  CAS  Google Scholar 

  37. Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    Article  PubMed  Google Scholar 

  38. Kosakovsky Pond SL, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533

    Article  Google Scholar 

  39. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD (2006) GARD: a genetic algorithm for recombination detection. Bioinformatics 22:3096–3098

    Article  PubMed  Google Scholar 

  40. Kottaridi C, Nomikou K, Teodori L, Savini G, Lelli R, Markoulatos P, Mangana O (2006) Phylogenetic correlation of Greek and Italian orf virus isolates based on VIR gene. Vet Microbiol 116:310–316

    Article  PubMed  CAS  Google Scholar 

  41. Labudovic A, Perkins H, van Leeuwen B, Kerr P (2004) Sequence mapping of the Californian MSW strain of Myxoma virus. Arch Virol 149:553–570

    Article  PubMed  CAS  Google Scholar 

  42. Lefkowitz EJ, Wang C, Upton C (2006) Poxviruses: past, present and future. Virus Res 117:105–118

    Article  PubMed  CAS  Google Scholar 

  43. Marshall ID, Fenner F (1958) Studies in the epidemiology of infectious myxomatosis of rabbits. V. Changes in the innate resitance of Australian wild rabbits exposed to myxomatosis. J Hyg 56:288–302

    Article  CAS  Google Scholar 

  44. Marshall ID, Fenner F (1960) Studies in the epidemiology of infectious myxomatosis of rabbits. VII. The virulence of strains of myxoma virus recovered from Australian wild rabbits between 1951 and 1959. J Hyg 58:485–488

    Article  CAS  Google Scholar 

  45. Marshall ID, Douglas GW (1961) Studies in the epidemiology of infectious myxomatosis of rabbits. VIII. Further observation on changes in the innate resistance of Australian wild rabbits exposed to myxomatosis. J Hyg 59:117–122

    Article  CAS  Google Scholar 

  46. Mercer AA, Ueda N, Friederechs SM, Hofmann K, Fraser KM, Bateman T, Fleming SB (2006) Comparative analysis of genome sequences of three isolates of Orf virus reveals unexpected sequence variation. Virus Res 116:146–158

    PubMed  CAS  Google Scholar 

  47. Messud-Petit F, Gelfi J, Delverdier M, Amardeihl MF, Py R, Sutter G, Bertagnoli S (1998) Serp2, an inhibitor of the interleukin-1β-converting enzyme, is critical in the pathobiology of myxoma virus. J Virol 72:7830–7839

    PubMed  CAS  Google Scholar 

  48. Morales M, Ramírez MA, Cano MJ, Párraga M, Castilla J, Pérez-Ordoyo LI, Torres JM, Bárcena J (2009) Genome comparison of a nonpathogenic Myxoma virus field strain with its ancestor, the virulent Lausanne strain. J Virol 83:2397–2403

    Article  PubMed  CAS  Google Scholar 

  49. Muñoz G (1960) Anverso y reverso de la mixomatosis. Servico Nacional de Pesca Fluvial y Caza, Madrid

    Google Scholar 

  50. Nash P, Barrett JW, Cao JX, Hota-Michell S, Lalani LS, Everett H, Xu XM, Robichaud J, Hnatiuk S, Ainslie C, Seet BT, McFadden G (1999) Immunomodulation by viruses: the myxoma virus story. Immunol Rev 168:103–120

    Article  PubMed  CAS  Google Scholar 

  51. Newton MA, Raftery AE (1994) Approximate Bayesian inference with the weighted likelihood bootstrap (with discussion). J Roy Stat Soc B 56:3–48

    Google Scholar 

  52. Osacar-Jimenez JJ, Lucientes-Curdi J, Calvete-Margolles C (2001) Abiotic factors influencing the ecology of wild rabbit fleas in north-eastern Spain. Med Vet Entomol 15:157–166

    Article  PubMed  CAS  Google Scholar 

  53. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  54. Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  PubMed  Google Scholar 

  55. Psikal I, Smíd B, Rodák L, Valícek L, Bendová J (2003) Atypical myxomatosis - Virus isolation, experimental infection of rabbits and restriction endonuclease analysis of the isolate. J Vet Med B Infect Dis Vet Public Health 50:259–264

    PubMed  CAS  Google Scholar 

  56. Rambaut A, Drummond A (2007) Tracer v1.4. (http://beast.bio.ed.ac.uk/Tracer)

  57. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    PubMed  CAS  Google Scholar 

  58. Ratcliffe FN, Myers N, Fennessy BV, Calaby JH (1952) Myxomatosis in Australia. A step forwards the biological control of the rabbit. Nature 170:1–13

    Article  Google Scholar 

  59. Roff DA (1997) Evolutionary Quantitative Genetics. Chapman & Hall, New York

    Google Scholar 

  60. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  61. Russell RJ, Robbins SJ (1989) Cloning and molecular characterization of the myxoma virus genome. Virology 170:147–159

    Article  PubMed  CAS  Google Scholar 

  62. Saint KM, French N, Kerr P (2001) Genetic variation in Australian isolates of myxoma virus: an evolutionary and epidemiological study. Arch Virol 146:1105–1123

    Article  PubMed  CAS  Google Scholar 

  63. Sakaoka H, Kurita K, Iida Y, Takada S, Umene K, Kim YT, Ren CS, Nahmias AJ (1994) Quantitative analysis of genomic polymorphism of herpes simplex virus type I strains from six countries: studies of molecular evolution and molecular epidemiology of the virus. J Gen Virol 75:513–527

    Article  PubMed  CAS  Google Scholar 

  64. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial-DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    PubMed  CAS  Google Scholar 

  65. Swofford DL (1998) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MA

    Google Scholar 

  66. Tajima F (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  67. Thiel T, Whiteman NK, Tirapé A, Baquero MI, Cedeño V, Walsh T, Jiménez Uzcátegui G, Parker PG (2005) Characterization of Canarypox-like viruses infecting endemic birds in the Galápagos Islands. J Wildl Dis 41:342–353

    PubMed  CAS  Google Scholar 

  68. Vilcek J (2004) Why are rabbits uniquely sensitive to myxoma virus? Cherchez l’interferon!. Nat Immunol 5:1205–1206

    Article  PubMed  CAS  Google Scholar 

  69. Weli SC, Traavik T, Tryland M, Coucheron DH, Nilssen O (2004) Analysis and comparison of the 4b core protein gene of avipoxviruses from wild birds: evidence for interspecies spatial phylogenetic variation. Arch Virol 149:2035–2046

    PubMed  CAS  Google Scholar 

  70. Williams K, Parer I, Coman B, Burley J, Braysher M (1995) Managing vertebrate pests: rabbits. Bureau of resource sciences/CSIRO Division of wildlife and ecology. Australian Government Publishing Services, Canberra

    Google Scholar 

  71. Zuñiga MC (2002) A pox on thee! Manipulation of the host immune system by myxoma virus and implications for viral-host co-adaptation. Virus Res 88:17–33

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank F. Guil, J. Layna and the members of Fundación CBD-Habitat, and the Hunters Society from Ajalvir for their help providing samples. L. Alcaraz assisted with the laboratory work, and E. Bulmer reviewed the English text. We also thank R. Zardoya for helpful discussions. F. A. benefitted from a FPU pre-doctoral grant from the Spanish Ministry of Education and Science. This study was funded by projects MAM/2484/2002-65/2002 and 010203030003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Alda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alda, F., Gaitero, T., Suárez, M. et al. Molecular characterisation and recent evolution of myxoma virus in Spain. Arch Virol 154, 1659–1670 (2009). https://doi.org/10.1007/s00705-009-0494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0494-6

Keywords

Navigation