Skip to main content

Advertisement

Log in

Complete genome analysis of a rabies virus isolate from Brazilian wild fox

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The complete genome sequence of wild-type rabies virus (RABV) isolated from a wild Brazilian hoary fox (Dusicyon sp.), the BR-Pfx1 isolate, was determined and compared with fixed RABV strains. The genome structure and organization of the BR-Pfx1 isolate were composed of 11,924 nt and included the five standard genes of rhabdoviruses. Sequences of mRNA start and stop signals for transcription were highly conserved among all structural protein genes of the BR-Pfx1 isolate. All amino acid residues in the glycoprotein (G) gene associated with pathogenicity were retained in the BR-Pfx1 isolate, while unique amino acid substitutions were found in antigenic region I of the nucleoprotein gene and III of G. These results suggest that although the standard genome structure and organization of the RABV isolate are common between the BR-Pfx1 isolate and fixed RABV strains, the unique amino acid substitutions in functional sites of the BR-Pfx1 isolate may result in different biological characteristics from fixed RABV strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Badrane H, Tordo N (2001) Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol 75:8096–8104

    Article  PubMed  CAS  Google Scholar 

  2. Baer GM (2007) The history of rabies. In: Jackson AC, Wunner WH (eds) Rabies, 2nd edn. Academic Press, San Diego, pp 1–22

    Google Scholar 

  3. Bernardi F, Nadin-Davis SA, Wandeler AI, Armstrong J, Gomes AA, Lima FS, Nogueira FR, Ito FH (2005) Antigenic and genetic characterization of rabies viruses isolated from domestic and wild animals of Brazil identifies the hoary fox as a rabies reservoir. J Gen Virol 86:3153–3162

    Article  PubMed  CAS  Google Scholar 

  4. Carnieli P Jr, Brandao PE, Carrieri ML, Castilho JG, Macedo CI, Machado LM, Rangel N, de Carvalho RC, de Carvalho VA, Montebello L, Wada M, Kotait I (2006) Molecular epidemiology of rabies virus strains isolated from wild canids in Northeastern Brazil. Virus Res 120:113–120

    Article  PubMed  CAS  Google Scholar 

  5. Carnieli P Jr, Fahl Wde O, Castilho JG, Oliveira Rde N, Macedo CI, Durymanova E, Jorge RS, Morato RG, Spindola RO, Machado LM, Ungar de Sa JE, Carrieri ML, Kotait I (2008) Characterization of Rabies virus isolated from canids and identification of the main wild canid host in Northeastern Brazil. Virus Res 131:33–46

    Article  PubMed  CAS  Google Scholar 

  6. Carnieli P Jr, Castilho JG, Fahl Wde O, Veras NM, Carrieri ML, Kotait I (2009) Molecular characterization of Rabies Virus isolates from dogs and crab-eating foxes in Northeastern Brazil. Virus Res 141:81–89

    Article  PubMed  CAS  Google Scholar 

  7. Chenik M, Chebli K, Blondel D (1995) Translation initiation at alternate in-frame AUG codons in the rabies virus phosphoprotein mRNA is mediated by a ribosomal leaky scanning mechanism. J Virol 69:707–712

    PubMed  CAS  Google Scholar 

  8. Chenik M, Schnell M, Conzelmann KK, Blondel D (1998) Mapping the interacting domains between the rabies virus polymerase and phosphoprotein. J Virol 72:1925–1930

    PubMed  CAS  Google Scholar 

  9. Conzelmann KK, Cox JH, Schneider LG, Thiel HJ (1990) Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175:485–499

    Article  PubMed  CAS  Google Scholar 

  10. Coulon P, Ternaux JP, Flamand A, Tuffereau C (1998) An avirulent mutant of rabies virus is unable to infect motoneurons in vivo and in vitro. J Virol 72:273–278

    PubMed  CAS  Google Scholar 

  11. Delmas O, Holmes EC, Talbi C, Larrous F, Dacheux L, Bouchier C, Bourhy H (2008) Genomic diversity and evolution of the lyssaviruses. PLoS ONE 3:e2057

    Article  PubMed  Google Scholar 

  12. Diaz AM, Papo S, Rodriguez A, Smith JS (1994) Antigenic analysis of rabies-virus isolates from Latin America and the Caribbean. Zentralbl Veterinarmed B 41:153–160

    PubMed  CAS  Google Scholar 

  13. Dietzschold B, Lafon M, Wang H, Otvos L Jr, Celis E, Wunner WH, Koprowski H (1987) Localization and immunological characterization of antigenic domains of the rabies virus internal N and NS proteins. Virus Res 8:103–125

    Article  PubMed  CAS  Google Scholar 

  14. Faber M, Pulmanausahakul R, Nagao K, Prosniak M, Rice AB, Koprowski H, Schnell MJ, Dietzschold B (2004) Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. Proc Natl Acad Sci U S A 101:16328–16332

    Article  PubMed  CAS  Google Scholar 

  15. Favoretto SR, Carrieri ML, Cunha EM, Aguiar EA, Silva LH, Sodre MM, Souza MC, Kotait I (2002) Antigenic typing of Brazilian rabies virus samples isolated from animals and humans, 1989–2000. Rev Inst Med Trop Sao Paulo 44:91–95

    PubMed  Google Scholar 

  16. Finke S, Conzelmann KK (2003) Dissociation of rabies virus matrix protein functions in regulation of viral RNA synthesis and virus assembly. J Virol 77:12074–12082

    Article  PubMed  CAS  Google Scholar 

  17. Finke S, Mueller-Waldeck R, Conzelmann KK (2003) Rabies virus matrix protein regulates the balance of virus transcription and replication. J Gen Virol 84:1613–1621

    Article  PubMed  CAS  Google Scholar 

  18. Fu ZF (2005) Genetic comparison of the rhabdoviruses from animals and plants. Curr Top Microbiol Immunol 292:1–24

    Article  PubMed  CAS  Google Scholar 

  19. Goto H, Minamoto N, Ito H, Luo TR, Sugiyama M, Kinjo T, Kawai A (1995) Expression of the nucleoprotein of rabies virus in Escherichia coli and mapping of antigenic sites. Arch Virol 140:1061–1074

    Article  PubMed  CAS  Google Scholar 

  20. Goto H, Minamoto N, Ito H, Ito N, Sugiyama M, Kinjo T, Kawai A (2000) Mapping of epitopes and structural analysis of antigenic sites in the nucleoprotein of rabies virus. J Gen Virol 81:119–127

    PubMed  CAS  Google Scholar 

  21. Grdzelishvili VZ, Smallwood S, Tower D, Hall RL, Hunt DM, Moyer SA (2006) Identification of a new region in the vesicular stomatitis virus L polymerase protein which is essential for mRNA cap methylation. Virology 350:394–405

    Article  PubMed  CAS  Google Scholar 

  22. Gupta AK, Blondel D, Choudhary S, Banerjee AK (2000) The phosphoprotein of rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C. J Virol 74:91–98

    Article  PubMed  CAS  Google Scholar 

  23. Harty RN, Paragas J, Sudol M, Palese P (1999) A proline-rich motif within the matrix protein of vesicular stomatitis virus and rabies virus interacts with WW domains of cellular proteins: implications for viral budding. J Virol 73:2921–2929

    PubMed  CAS  Google Scholar 

  24. Harty RN, Brown ME, McGettigan JP, Wang G, Jayakar HR, Huibregtse JM, Whitt MA, Schnell MJ (2001) Rhabdoviruses and the cellular ubiquitin-proteasome system: a budding interaction. J Virol 75:10623–10629

    Article  PubMed  CAS  Google Scholar 

  25. Ito M, Arai YT, Itou T, Sakai T, Ito FH, Takasaki T, Kurane I (2001) Genetic characterization and geographic distribution of rabies virus isolates in Brazil: identification of two reservoirs, dogs and vampire bats. Virology 284:214–222

    Article  PubMed  CAS  Google Scholar 

  26. Ito N, Kakemizu M, Ito KA, Yamamoto A, Yoshida Y, Sugiyama M, Minamoto N (2001) A comparison of complete genome sequences of the attenuated RC-HL strain of rabies virus used for production of animal vaccine in Japan, and the parental Nishigahara strain. Microbiol Immunol 45:51–58

    PubMed  CAS  Google Scholar 

  27. Jacob Y, Real E, Tordo N (2001) Functional interaction map of lyssavirus phosphoprotein: identification of the minimal transcription domains. J Virol 75:9613–9622

    Article  PubMed  CAS  Google Scholar 

  28. Kobayashi Y, Sato G, Shoji Y, Sato T, Itou T, Cunha EM, Samara SI, Carvalho AA, Nociti DP, Ito FH, Sakai T (2005) Molecular epidemiological analysis of bat rabies viruses in Brazil. J Vet Med Sci 67:647–652

    Article  PubMed  CAS  Google Scholar 

  29. Kobayashi Y, Okuda H, Nakamura K, Sato G, Itou T, Carvalho AA, Silva MV, Mota CS, Ito FH, Sakai T (2007) Genetic analysis of phosphoprotein and matrix protein of rabies viruses isolated in Brazil. J Vet Med Sci 69:1145–1154

    Article  PubMed  CAS  Google Scholar 

  30. Kouznetzoff A, Buckle M, Tordo N (1998) Identification of a region of the rabies virus N protein involved in direct binding to the viral RNA. J Gen Virol 79(Pt 5):1005–1013

    PubMed  CAS  Google Scholar 

  31. Kuzmin IV, Wu X, Tordo N, Rupprecht CE (2008) Complete genomes of Aravan, Khujand, Irkut and West Caucasian bat viruses, with special attention to the polymerase gene and non-coding regions. Virus Res 136:81–90

    Article  PubMed  CAS  Google Scholar 

  32. Le Mercier P, Jacob Y, Tordo N (1997) The complete Mokola virus genome sequence: structure of the RNA-dependent RNA polymerase. J Gen Virol 78:1571–1576

    PubMed  CAS  Google Scholar 

  33. Lo KW, Naisbitt S, Fan JS, Sheng M, Zhang M (2001) The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif. J Biol Chem 276:14059–14066

    Article  PubMed  CAS  Google Scholar 

  34. Marston DA, McElhinney LM, Johnson N, Muller T, Conzelmann KK, Tordo N, Fooks AR (2007) Comparative analysis of the full genome sequence of European bat lyssavirus type 1 and type 2 with other lyssaviruses and evidence for a conserved transcription termination and polyadenylation motif in the GL 3′ non-translated region. J Gen Virol 88:1302

    Article  PubMed  CAS  Google Scholar 

  35. Minamoto N, Tanaka H, Hishida M, Goto H, Ito H, Naruse S, Yamamoto K, Sugiyama M, Kinjo T, Mannen K et al (1994) Linear and conformation-dependent antigenic sites on the nucleoprotein of rabies virus. Microbiol Immunol 38:449–455

    PubMed  CAS  Google Scholar 

  36. Morimoto K, Ohkubo A, Kawai A (1989) Structure and transcription of the glycoprotein gene of attenuated HEP-flury strain of rabies virus. Virology 173:465–477

    Article  PubMed  CAS  Google Scholar 

  37. Morimoto K, Akamine T, Takamatsu F, Kawai A (1998) Studies on rabies virus RNA polymerase: 1. cDNA cloning of the catalytic subunit (L protein) of avirulent HEP-flury strain and its expression in animal cells. Microbiol Immunol 42:485–496

    PubMed  CAS  Google Scholar 

  38. Nadin-Davis SA, Huang W, Wandeler AI (1997) Polymorphism of rabies viruses within the phosphoprotein and matrix protein genes. Arch Virol 142:979–992

    Article  PubMed  CAS  Google Scholar 

  39. Nadin-Davis SA, Abdel-Malik M, Armstrong J, Wandeler AI (2002) Lyssavirus P gene characterisation provides insights into the phylogeny of the genus and identifies structural similarities and diversity within the encoded phosphoprotein. Virology 298:286–305

    Article  PubMed  CAS  Google Scholar 

  40. Nadin-Davis SA (2007) Molecular epidemiology. In: Jackson AC, Wunner WH (eds) Rabies, 2nd edn. Academic Press, San Diego, pp 69–122

    Google Scholar 

  41. Nagaraja T, Madhusudana S, Desai A (2008) Molecular characterization of the full-length genome of a rabies virus isolate from India. Virus Genes 36:449–459

    Article  PubMed  CAS  Google Scholar 

  42. Poch O, Blumberg BM, Bougueleret L, Tordo N (1990) Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 71:1153–1162

    Article  PubMed  CAS  Google Scholar 

  43. Prehaud C, Coulon P, LaFay F, Thiers C, Flamand A (1988) Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. J Virol 62:1–7

    PubMed  CAS  Google Scholar 

  44. Raux H, Flamand A, Blondel D (2000) Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74:10212–10216

    Article  PubMed  CAS  Google Scholar 

  45. Ravkov EV, Smith JS, Nichol ST (1995) Rabies virus glycoprotein gene contains a long 3′ noncoding region which lacks pseudogene properties. Virology 206:718–723

    Article  PubMed  CAS  Google Scholar 

  46. Sakamoto S, Ide T, Nakatake H, Tokiyoshi S, Yamamoto M, Kawai A, Smith JS (1994) Studies on the antigenicity and nucleotide sequence of the rabies virus Nishigahara strain, a current seed strain used for dog vaccine production in Japan. Virus Genes 8:35–46

    Article  PubMed  CAS  Google Scholar 

  47. Sato G, Itou T, Shoji Y, Miura Y, Mikami T, Ito M, Kurane I, Samara SI, Carvalho AA, Nociti DP, Ito FH, Sakai T (2004) Genetic and phylogenetic analysis of glycoprotein of rabies virus isolated from several species in Brazil. J Vet Med Sci 66:747–753

    Article  PubMed  CAS  Google Scholar 

  48. Sato G, Kobayashi Y, Motizuki N, Hirano S, Itou T, Cunha EM, Ito FH, Sakai T (2009) A unique substitution at position 333 on the glycoprotein of rabies virus street strains isolated from non-hematophagous bats in Brazil. Virus Genes 38:74–79

    Article  PubMed  CAS  Google Scholar 

  49. Schnell MJ, Mebatsion T, Conzelmann KK (1994) Infectious rabies viruses from cloned cDNA. EMBO J 13:4195–4203

    PubMed  CAS  Google Scholar 

  50. Schnell MJ, Conzelmann KK (1995) Polymerase activity of in vitro mutated rabies virus L protein. Virology 214:522–530

    Article  PubMed  CAS  Google Scholar 

  51. Shakin-Eshleman SH, Remaley AT, Eshleman JR, Wunner WH, Spitalnik SL (1992) N-linked glycosylation of rabies virus glycoprotein. Individual sequens differ in their glycosylation efficiencies and influence on cell surface expression. J Biol Chem 267:10690–10698

    PubMed  CAS  Google Scholar 

  52. Shimizu K, Ito N, Sugiyama M, Minamoto N (2006) Sensitivity of rabies virus to type I interferon is determined by the phosphoprotein gene. Microbiol Immunol 50:975–978

    PubMed  CAS  Google Scholar 

  53. Shimizu K, Ito N, Mita T, Yamada K, Hosokawa-Muto J, Sugiyama M, Minamoto N (2007) Involvement of nucleoprotein, phosphoprotein, and matrix protein genes of rabies virus in virulence for adult mice. Virus Res 123:154–160

    Article  PubMed  CAS  Google Scholar 

  54. Shoji Y, Kobayashi Y, Sato G, Itou T, Miura Y, Mikami T, Cunha EM, Samara SI, Carvalho AA, Nocitti DP, Ito FH, Kurane I, Sakai T (2004) Genetic characterization of rabies viruses isolated from frugivorous bat (Artibeus spp.) in Brazil. J Vet Med Sci 66:1271–1273

    Article  PubMed  CAS  Google Scholar 

  55. Shoji Y, Kobayashi Y, Sato G, Gomes AA, Itou T, Ito FH, Sakai T (2006) Genetic and phylogenetic characterization of rabies virus isolates from wildlife and livestock in Paraiba, Brazil. Acta Virol 50:33–37

    PubMed  CAS  Google Scholar 

  56. Takayama-Ito M, Ito N, Yamada K, Sugiyama M, Minamoto N (2006) Multiple amino acids in the glycoprotein of rabies virus are responsible for pathogenicity in adult mice. Virus Res 115:169–175

    Article  PubMed  CAS  Google Scholar 

  57. Tordo N, Poch O, Ermine A, Keith G (1986) Primary structure of leader RNA and nucleoprotein genes of the rabies genome: segmented homology with VSV. Nucleic Acids Res 14:2671–2683

    Article  PubMed  CAS  Google Scholar 

  58. Tordo N, Poch O, Ermine A, Keith G, Rougeon F (1986) Walking along the rabies genome: is the large G-L intergenic region a remnant gene? Proc Natl Acad Sci USA 83:3914–3918

    Article  PubMed  CAS  Google Scholar 

  59. Tordo N, Poch O, Ermine A, Keith G, Rougeon F (1988) Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses. Virology 165:565–576

    Article  PubMed  CAS  Google Scholar 

  60. Tuffereau C, Leblois H, Benejean J, Coulon P, Lafay F, Flamand A (1989) Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology 172:206–212

    Article  PubMed  CAS  Google Scholar 

  61. Warrilow D, Smith IL, Harrower B, Smith GA (2002) Sequence analysis of an isolate from a fatal human infection of Australian bat lyssavirus. Virology 297:109–119

    Article  PubMed  CAS  Google Scholar 

  62. Wu X, Franka R, Velasco-Villa A, Rupprecht CE (2007) Are all lyssavirus genes equal for phylogenetic analyses? Virus Res 129:91–103

    Article  PubMed  CAS  Google Scholar 

  63. Wunner WH (2002) Rabies virus. In: Jackson AC, Wunner WH (eds) Rabies. Academic Press, San Diego, pp 23–77

    Google Scholar 

  64. Yamada K, Ito N, Takayama-Ito M, Sugiyama M, Minamoto N (2006) Multigenic relation to the attenuation of rabies virus. Microbiol Immunol 50:25–32

    PubMed  CAS  Google Scholar 

  65. Yang J, Koprowski H, Dietzschold B, Fu ZF (1999) Phosphorylation of rabies virus nucleoprotein regulates viral RNA transcription and replication by modulating leader RNA encapsidation. J Virol 73:1661–1664

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Academic Frontier Project for Private Universities from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and a grant for Research on Emerging and Re-emerging Infectious Diseases, Ministry of Health, Labour and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Itou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mochizuki, N., Kobayashi, Y., Sato, G. et al. Complete genome analysis of a rabies virus isolate from Brazilian wild fox. Arch Virol 154, 1475–1488 (2009). https://doi.org/10.1007/s00705-009-0475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0475-9

Keywords

Navigation