Skip to main content

Advertisement

Log in

Glycoprotein-G-gene-based molecular and phylogenetic analysis of rabies viruses associated with a large outbreak of bovine rabies in southern Brazil

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A large outbreak of hematophagous-bat-associated bovine rabies has been occurring in Rio Grande do Sul (RS), the southernmost Brazilian state, since 2011, with official estimates exceeding 50,000 cattle deaths. The present article describes a genetic characterization of rabies virus (RABV) recovered from 59 affected cattle and two sheep, from 56 herds in 16 municipalities (2012-2016). Molecular analysis was performed using the nucleotide (nt) and predicted amino acid (aa) sequences of RABV glycoprotein G (G). A high level of nt and aa sequence identity was observed among the examined G sequences, ranging from 98.4 to 100%, and from 97.3 to 100%, respectively. Likewise, high levels of nt and aa sequence identity were observed with bovine (nt, 99.8%; aa, 99.8%) and hematophagous bat (nt, 99.5%; aa, 99.4%) RABV sequences from GenBank, and lower levels were observed with carnivore RABV sequences (nt, 92.8%; aa, 88.1%). Some random mutations were observed in the analyzed sequences, and a few consistent mutations were observed in some sequences belonging to cluster 2, subcluster 2b. The clustering of the sequences was observed in a phylogenetic tree, where two distinct clusters were evident. Cluster 1 comprised RABV sequences covering the entire study period (2012 to 2016), but subclusters corresponding to different years could be identified, indicating virus evolution and/or introduction of new viruses into the population. In some cases, viruses from the same location obtained within a short period grouped into different subclusters, suggesting co-circulation of viruses of different origins. Subcluster segregation was also observed in sequences obtained in the same region during different periods, indicating the involvement of different viruses in the cases at different times. In summary, our results indicate that the outbreaks occurring in RS (2012 to 2016) probably involved RABV of different origins, in addition to a possible evolution of RABV isolates within this period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Badrane H, Bahloul C, Perrin P, Tordo N (2001) Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J Virol 75(7):3268–3276

  2. Banyard AC, Hayman D, Johnson N, McElhinney L, Fooks AR (2011) Bats and lyssaviruses. Adv Virus Res 79:239–289

    Article  CAS  PubMed  Google Scholar 

  3. Belotto A, Leanes LF, Schneider MC, Tamayo H, Correa E (2005) Overview of rabies in the Americas. Virus Res 111(1):5–12

    Article  CAS  PubMed  Google Scholar 

  4. Bourhy H, Kissi B, Audry L, Smreczak M, Sadkowska-Todys M, Kulonen K, Tordo N, Zmudzinski JF, Holmes EC (1999) Ecology and evolution of rabies virus in Europe. J Gen Virol 80(10):2545–2557

    Article  CAS  PubMed  Google Scholar 

  5. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Normas técnicas de prolaxia da raiva humana. Brasília: Ministério da Saúde, 2011. 60 p. Série A. Normas e Manuais Técnicos

  6. Carnieli P Jr, Castilho JG, Fahl WO, Véras NMC, Carrieri ML, Kotait I (2009) Molecular characterization of rabies virus isolates from dogs and crab-eating foxes in Northeastern Brazil. Virus Res 141(1):81–89

    Article  CAS  PubMed  Google Scholar 

  7. Carnieli P Jr, Castilho JG, Fahl WO, Véras NMC, Timenetsky MCST (2009) Genetic characterization of rabies virus isolated from cattle between 1997 and 2002 in an epizootic area in the state of São Paulo. Brazil. Virus Res 144(1–2):215–224

    Article  CAS  PubMed  Google Scholar 

  8. Coll JM (1995) The glycoprotein G of rhabdoviruses. Arch Virol 140:827–851

    Article  CAS  PubMed  Google Scholar 

  9. CRMV-RS. Notícias. Rio Grande do Sul volta a registrar casos de raiva felina e canina. Conselho Regional de Medicina Veterinária do Rio Grande do Sul, Porto Alegre, Jan/Mar de 2014. http://www.crmvrs.gov.br/jornal/78.pdf. Accessed 08 June 2014

  10. Delpietro HA, Nader AJ (1989) Rabies of herbivores transmitted by vampire bats in north-eastern Argentina. Rev Sci Tech 8(1):189–198

    Article  Google Scholar 

  11. Dietzschold B, Wunner WH, Wiktor TJ, Lopes AD, Lafon M, Smith CL, Koprowski H (1983) Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci USA 80(1):70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Estévez Garcia AI, Peixoto HC, Silva SO, Polo G, Alves AJ, Brandão PE, Cunha EM, Richtzenhain LJ (2014) Phylogenetic analysis of rabies virus isolated from herbivores in Minas Gerais and São Paulo border (2000–2009). Brazil. Pesq Vet Bras 34(12):1196–1202

    Article  Google Scholar 

  13. ICTV. International Commitee on Taxonomy of Viruses. http://www.ictvonline.org/virusTaxonomy.asp/. Accessed 22 May 2013

  14. Gomes MN, Monteiro AMV, Lewis N, Gonçalves CA, Nogueira Filho VS (2010) Landscape risk factors for attacks of vampire bats on cattle in Sao Paulo, Brazil. Prev Vet Med 93(2–3):139–146

    Article  PubMed  Google Scholar 

  15. Itou T, Fukayama T, Mochizuki N, Kobayashi Y, Deberaldini ER, Carvalho Adolorata AB, Ito FH, Sakai T (2016) Molecular epidemiological tracing of a cattle rabies outbreak lasting less than a month in Rio Grande do Sul in southern Brazil. BMC Res Notes 9:87

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ito M, Yohko T, Itou AT, Sakai T, Ito FH, Takasaki T, Kurane I (2001) Genetic characterization and geographic distribution of rabies virus isolates in Brazil: identification of two reservoirs, dogs and vampire bats. Virology 284(2):214–222

    Article  CAS  PubMed  Google Scholar 

  17. Johnson N, Aréchiga-Ceballos N, Aguilar-Setien A (2014) Vampire bat rabies: ecology, epidemiology and control. Viruses 6(5):1911–1928

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kanitz FA, Kowalski AP, Batista HBCH, Carnieli P Jr, Oliveira RN, Weiblen R, Flores EF (2014) Molecular epidemiology of an outbreak of bovine rabies in central Rio Grande do Sul, Brazil. Cienc Rural 44(5):834–840

    Article  Google Scholar 

  19. Kobayashi Y, Sato G, Mochizuki N, Hirano S, Itou T, Carvalho AAB, Albas A, Santos HP, Ito FH, Sakai T (2008) Molecular and geographic analyses of vampire bat-transmitted cattle rabies in central Brazil. BMC Res Notes 4(44):1–9

    Google Scholar 

  20. Kuzmina NA, Kuzmin IV, Ellison JA, Rupprecht CE (2013) Conservation of binding epitopes for monoclonal antibodies on the rabies virus glycoprotein. J Antivir Antiretrovir 5:2

  21. Lafon M, Wiktor TJ, Macfarlan RJ (1983) Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. J Gen Virol 64(4):843–851

    Article  PubMed  Google Scholar 

  22. Lafon M (2005) Rabies virus receptors. J Neurovirol 11(1):82–87

    Article  CAS  PubMed  Google Scholar 

  23. Lathe RF, Kieny MP, Schmitt D, Curtis P, Lecocq JP (1984) M13 bacteriophage vectors for the expression of foreign proteins in Escherichia coli: the rabies glycoprotein. J Molec Appl Genet 2(4):331–342

    CAS  Google Scholar 

  24. Lee DN, Papeş M, Van Den Bussche RA (2012) Present and potential future distribution of common vampire bats in the Americas and the associated risk to cattle. PLoS One 7(8):e42466. doi:10.1371/journal.pone.0042466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mayen F (2003) Haematophagous bats in Brazil: their role in rabies transmission, impact on public health, livestock industry and alternatives to an indiscriminate reduction of bat population. J Vet Med 50(10):469–472

    Article  CAS  Google Scholar 

  26. Mebatsion T (2001) Extensive attenuation of rabies virus by simultaneously modifying the dynein light chain binding site in the P protein and replacing Arg333 in the G protein. J Virol 75(23):11496–11502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peixoto HC, Estévez-Garcia AI, Silva SOS, Ramos OS, Silva LP, Brandão PE, Richtzenhain LJ (2014) Molecular epidemiology of rabies virus isolated of herbivores from Brazilian Amazon. Braz J Vet Res Anim Sci 51(2):122–130

    Article  Google Scholar 

  28. Sato G, Itou T, Shoji Y, Miura Y, Mikami T, Ito M, Kurane I, Samara SI, Carvalho AA, Nociti DP, Ito FH, Sakai T (2004) Genetic and phylogenetic analysis of glycoprotein of rabies virus isolated from several species in Brazil. J Vet Med Sci 66(7):747–753

    Article  CAS  PubMed  Google Scholar 

  29. SEAPI/RS. Relatório de raiva bovina. Secretaria da Agricultura, Pecuária e Irrigação do Rio Grande do Sul, Brasil. http://www.agricultura.rs.gov.br/upload/arquivos/201612/02110534-see-relatorio-raiva-bovina-v-3.pdf. Accessed 07 Feb 2017

  30. Shakin-Eshleman SH, Remaley AT, Eshleman JR, Wunner WH, Spitalnik SL (1992) N-linked glycosylation of rabies virus glycoprotein: individual sequons differ in their glycosylation efficiencies and influence on cell-surface expression. J Biol Chem 267(15):10690–10698

    CAS  PubMed  Google Scholar 

  31. Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  CAS  PubMed  Google Scholar 

  32. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vieira LFP, Pereira SRFG, Carnieli P, Tavares LCB, Kotait I (2013) Phylogeography of rabies virus isolated from herbivores and bats in the Espírito Santo State, Brazil. Virus Genes 46:330–336

    Article  CAS  PubMed  Google Scholar 

  34. Velasco-Villa A, Orciari LA, Juárez-Islas V, Gómez-Sierra M, Padilla-Medina I, Flisser A, Souza V, Castillo A, Franka R, Escalante-Mañe M, Sauri-González I, Rupprecht CE (2006) Molecular diversity of rabies viruses associated with bats in Mexico and other countries of the Americas. J Clin Microbiol 44(5):1697–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Von Teichman B, Thomson G, Meredith C, Nel L (1995) Molecular epidemiology of rabies virus in South Africa: evidence for two distinct virus groups. J Gen Virol 76(1):73–82

    Article  Google Scholar 

  36. Wagner RR, Prevec L, Brown F, Summers DF, Sokol F, MacLeod R (1972) Classification of rhabdovirus proteins: a proposal. J Virol 10(6):1228–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  37. WHO. World Health Organization (2005) WHO expert consultation on rabies. First report. (WHO technical report series, No. 931) World Health Organization, Geneva, Switzerland

  38. Zhu H, Chen X, Shao X, Ba H, Wang F, Wang H, Yang Y, Sun N, Ren J, Cheng S, Wen Y (2015) Characterization of a virulent dog-originated rabies virus affecting more than twenty fallow deer (Dama dama) in Inner Mongolia, China. Infect Genet Evol 31:127–134

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo F. Flores.

Ethics declarations

Funding

This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (447337/2014-9).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 97 kb)

Supplementary material 2 (PPTX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cargnelutti, J.F., de Quadros, J.M., Martins, M. et al. Glycoprotein-G-gene-based molecular and phylogenetic analysis of rabies viruses associated with a large outbreak of bovine rabies in southern Brazil. Arch Virol 162, 3697–3704 (2017). https://doi.org/10.1007/s00705-017-3533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3533-8

Navigation