Skip to main content

Advertisement

Log in

Assessing future changes in daily precipitation tails over India: insights from multimodel assessment of CMIP6 GCMs

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The tails of the probability distribution host extremes. The distributions are typically classified into heavy or light-tailed distributions subjected to their tail behavior, out of which the former signifies frequent happenings of extreme events. The present study demonstrates the analysis where the outputs from 13 climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) are used to evaluate changes in the tail behavior of precipitation extremes that will preside over India for the twenty-first century. A straightforward empirical index known as the “obesity index” (OB) is utilized to measure the tail heaviness for each of the 4801 daily precipitation records over India for historical (1970–2019) and future (2020–2100) time periods. The same approach was used to characterize daily precipitation tails in the Indian meteorological subdivisions and across different climate types during various periods. The results highlight that heavy-tailed distributions are well-suited for daily precipitation extremes in India, with OB values above 0.75 observed in nearly all grids for both present and future scenarios. Notably, in the case of the shared socioeconomic pathway (SSP) 585 climate scenario, which is the worst climate scenario, approximately 42.82% of grids exhibit the highest range of OB from 0.85 to 0.9 relative to other SSP scenarios. The findings also show that the largest to smallest heavy tails are associated with major climate types E (polar), B (arid), A (tropical), and C (temperate). Large heavy-tailed extremes are observed in ET, BSh, BWh, and Aw for climate subtypes, while relatively lighter-tailed extremes were observed in Am and Cwb. Furthermore, the variation in the OB is found to be non-linear with the elevation. In climatic zones Aw, BSh, Cwa, and ET, a U-shaped pattern is observed, while in climate zone Cwb, it shows a concave increase. Conversely, curves are convex decreasing for As, BWh, Csa, and convex increasing for zone Am. The conclusions from this study can help policymakers in designing adaptation plans in response to the anticipated effects of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Daily gridded precipitation data having a resolution of 0.25° × 0.25° was procured from the India Meteorological Department (IMD).

Code availability

Codes are developed by the authors to perform the analysis in this paper.

References

  • Aadhar S, Mishra V (2020) On the projected decline in droughts over South Asia in CMIP6 multimodel ensemble. J Geophys Res: Atmos 125(20):e2020JD033587

    Article  Google Scholar 

  • Aggarwal PK (2008) Global climate change and Indian agriculture: impacts, adaptation and mitigation. Indian J Agric Sci 78(11):911

    Google Scholar 

  • AghaKouchak A, Chiang F, Huning LS, Love CA, Mallakpour I, Mazdiyasni O, Sadegh M (2020) Climate extremes and compound hazards in a warming world. Annu Rev Earth Planet Sci 48:519–548

    Article  CAS  Google Scholar 

  • Ali H, Mishra V (2018) Increase in subdaily precipitation extremes in India under 1.5 and 2.0 C warming worlds. Geophys Res Lett 45(14):6972–6982

    Article  Google Scholar 

  • Anandhi A, Frei A, Pierson DC, Schneiderman EM, Zion MS, Lounsbury D, Matonse AD (2011) Examination of change factor methodologies for climate change impact assessment. Water Resour Res 47:W03501. https://doi.org/10.1029/2010WR009104

    Article  Google Scholar 

  • Baines PG, Folland CK (2007) Evidence for a rapid global climate shift across the late 1960s. J Clim 20(12):2721–2744

    Article  Google Scholar 

  • Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5(1):1–12

    Article  Google Scholar 

  • Bernardara P, Schertzer D, Sauquet E, Tchiguirinskaia I, Lang M (2008) The flood probability distribution tail: how heavy is it? Stoch Env Res Risk Assess 22:107–122

    Article  Google Scholar 

  • Bhattacharya B, Mohanty S, Singh C (2022) Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean. Theoret Appl Climatol 148(1–2):585–602

    Article  Google Scholar 

  • Bi D, Dix M, Marsland S, O’farrell S, Sullivan A, Bodman R, … Heerdegen A (2020) Configuration and spin-up of ACCESS-CM2, the new generation Australian community climate and earth system simulator coupled model. J South Hemisphere Earth Syst Sci 70(1):225-251

  • Boucher O, Servonnat J, Albright AL, Aumont O, Balkanski Y, Bastrikov V, … Vuichard N (2020) Presentation and evaluation of the IPSL‐CM6A‐LR climate model. J Adv Model Earth Syst 12(7):e2019MS002010

  • Cavanaugh NR, Gershunov A, Panorska AK, Kozubowski TJ (2015) The probability distribution of intense daily precipitation. Geophys Res Lett 42:1560–1567. https://doi.org/10.1002/2015GL063238

    Article  Google Scholar 

  • Cherchi A, Fogli PG, Lovato T, Peano D, Iovino D, Gualdi S, ... Navarra A (2019) Global mean climate and main patterns of variability in the CMCC‐CM2 coupled model. J Adv Model Earth Syst 11(1):185–209

  • Choudhary A, Dimri AP (2019) On bias correction of summer monsoon precipitation over India from CORDEXSA simulations. Int J Climatol 39(3):1388-1403

  • Choudhury BA, Rajesh PV, Zahan Y et al (2022) Evolution of the Indian summer monsoon rainfall simulations from CMIP3 to CMIP6 models. Clim Dyn 58:2637–2662 . https://doi.org/10.1007/s00382-021-06023-0

  • Coles S, Pericchi LR, Sisson S (2003) A fully probabilistic approach to extreme rainfall modeling. J Hydrol 273(1–4):35–50

    Article  Google Scholar 

  • Cooke RM, Nieboer D, Misiewicz J (2014) Fat-tailed distributions: data, diagnostics and dependence. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Cools M, Moons E, Wets G (2010) Assessing the impact of weather on traffic intensity. Weather Climate Soc 2(1):60–68

    Article  Google Scholar 

  • Das S, Sarkar S, Kanungo DP (2022) Rainfall-induced landslide (RFIL) disaster in Dima Hasao, Assam, Northeast India. https://doi.org/10.1007/s10346-022-01962-z

  • Das B, Ghosh S (2016) Detecting tail behavior: mean excess plots with confidence bounds. Extremes 19:325–349. https://doi.org/10.1007/s10687-015-0238-9

    Article  Google Scholar 

  • Dash SK, Kulkarni MA, Mohanty UC, Prasad K (2009) Changes in the characteristics of rain events in India. J Geophys Res: Atmos 114(D10)

  • Dash S, Maity R (2019) Temporal evolution of precipitation-based climate change indices across India: contrast between pre-and post-1975 features. Theor Appl Climatol 138(3-4):1667-1678

  • Deepthi B, Sivakumar B (2022) General circulation models for rainfall simulations: performance assessment using complex networks. Atmos Res 278:106333

    Article  Google Scholar 

  • Döscher R, Acosta M, Alessandri A, Anthoni P, Arneth A, Arsouze T, ... Zhang Q (2021) The EC-earth3 Earth system model for the climate model intercomparison project 6. Geosci Model Dev Discuss 2021:1–90

  • Dunne JP, Horowitz LW, Adcroft AJ, Ginoux P, Held IM, John JG, … Zhao M (2020) The GFDL Earth System Model version 4.1 (GFDL‐ESM 4.1): overall coupled model description and simulation characteristics. J Adv Model Earth Syst12(11):e2019MS002015

  • Dutta R, Maity R (2022) Value addition in coupled model intercomparison project phase 6 over phase 5: global perspectives of precipitation, temperature and soil moisture fields. Acta Geophys 70(3):1401–1415

    Article  Google Scholar 

  • El Adlouni S, Bobée B, Ouarda TBMJ (2008) On the tails of extreme event distributions in hydrology. J Hydrol 355:16–33. https://doi.org/10.1016/J.JHYDROL.2008.02.011

    Article  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958

    Article  Google Scholar 

  • Eyring V, Cox PM, Flato GM, Gleckler PJ, Abramowitz G, Caldwell P et al (2019) Taking climate model evaluation to the next level. Nat Clim Chang 9(2):102–110. https://doi.org/10.1038/s41558-018-0355-y

    Article  Google Scholar 

  • Fisher RA, Tippett LHC (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. In: Mathematical proceedings of the Cambridge Philosophical Society (Vol 24, No 2, pp 180–190). Cambridge University Press

  • Foss S, Korshunov D, Zachary S (2013) An introduction to heavy-tailed and subexponential distributions. Springer-Verlag New York. https://doi.org/10.1007/978-1-4419-9473-8

  • Fréchet M (1927) Sur la loi de probabilité de l’écart maximum. Ann Soc Polon Math 6:93

    Google Scholar 

  • Geiger R (1954) Landolt-Börnstein–Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie Vol 3. Ch. Klassifikation der Klimate nach W. Köppen.–Springer, Berlin, 603–607

  • Ghosh S, Mujumdar PP (2009) Climate change impact assessment: uncertainty modeling with imprecise probability. J Geophys Res 114. https://doi.org/10.1029/2008JD011648

  • Ghosh S, Resnick S (2010) A discussion on mean excess plots. Stochastic Processes and their Applications Volume 120, Issue 8, pages 1492–1517, ISSN 0304–4149. https://doi.org/10.1016/j.spa.2010.04.002

  • Gnedenko B (1943) Sur la distribution limite du terme maximum d'une serie aleatoire. Ann Math 44:423–453. https://doi.org/10.2307/1968974

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445

    Article  CAS  Google Scholar 

  • Gu X, Zhang Q, Singh VP, Liu L, Shi P (2017) Spatiotemporal patterns of annual and seasonal precipitation extreme distributions across China and potential impact of tropical cyclones. Int J Climatol 37(10):3949–3962

    Article  Google Scholar 

  • Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359

    Article  Google Scholar 

  • Gumbel EJ (1941) The return period of flood flows. Ann Math Stat 12(2):163–190

    Article  Google Scholar 

  • Gunwani P, Mohan M (2017) Sensitivity of WRF model estimates to various PBL parameterizations in different climatic zones over India. Atmos Res 194:43–65

    Article  Google Scholar 

  • Gupta N, Chavan SR (2021) Assessment of temporal change in the tails of probability distribution of daily precipitation over India due to climatic shift in the 1970s. J Water Climate Change 12(6):2753–2773

    Article  Google Scholar 

  • Gupta N, Chavan SR (2022) Characterizing the tail behaviour of daily precipitation probability distributions over India using the obesity index. Int J Climatol 42(4):2543–2565

    Article  Google Scholar 

  • Gupta N, Chavan SR (2023b) A comprehensive decision support system for the characterization of probability distribution tails for daily precipitation. J Hydrol 626:130282

    Article  Google Scholar 

  • Gupta V, Singh V, Jain MK (2020) Assessment of precipitation extremes in India during the 21st century under SSP1–1.9 mitigation scenarios of CMIP6 GCMs. Journal of Hydrology 590:125422

    Article  Google Scholar 

  • Gupta N, Chavan SR (2023a) Investigating the tail behaviour and associated risk with daily discharges in South Indian Rivers. Stoch Environ Res Risk Assess 37:3383–3399. https://doi.org/10.1007/s00477-023-02453-w

  • Gusain A, Ghosh S, Karmakar S (2020) Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos Res 232:104680

    Article  Google Scholar 

  • Hill BM (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3:1163–1174

    Article  Google Scholar 

  • Hobbi S (2021) Global characteristics of extreme precipitation and variation of climate types from Köppen-Geiger classification using different datasets (Doctoral dissertation, University of Saskatchewan)

  • Huang J, Mondal SK, Zhai J, Fischer T, Wang Y, Su B, ... Jiang T (2022) Intensity-area-duration-based drought analysis under 1.5° C–4.0° C warming using CMIP6 over a climate hotspot in South Asia. J Clean Prod 345:131106

  • Jaiswal R, Mall RK, Singh N, Lakshmi Kumar TV, Niyogi D (2022) Evaluation of bias correction methods for regional climate models: downscaled rainfall analysis over diverse agroclimatic zones of India. Earth Space Sci 9(2):e2021EA001981

    Article  Google Scholar 

  • Jenkinson AF (1955) The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q J R Meteorol Soc 81(348):158–171

    Article  Google Scholar 

  • Kamruzzaman M, Shahid S, Islam AT, Hwang S, Cho J, Zaman MAU, ... Hossain MB (2021) Comparison of CMIP6 and CMIP5 model performance in simulating historical precipitation and temperature in Bangladesh: a preliminary study. Theor Appl Climatol 145:1385–1406

  • Katz RW (2010) Statistics of extremes in climate change. Clim Change 100(1):71–76

    Article  CAS  Google Scholar 

  • Konapala G, Mishra A, Leung LR (2017) Changes in temporal variability of precipitation over land due to anthropogenic forcings. Environ Res Lett 12(2):024009

    Article  Google Scholar 

  • Konda G, Vissa NK (2023) Evaluation of CMIP6 models for simulations of surplus/deficit summer monsoon conditions over India. Clim Dyn 60(3–4):1023–1042

    Article  Google Scholar 

  • Köppen WP, Geiger R (1923) Klimakarte der erde. Justus Perthes

    Book  Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorologis-che Zeitschrift 15(3):259–263. https://doi.org/10.1127/0941-2948/2006/0130

  • Krishnan R, Sanjay J, Gnanaseelan C, Mujumdar M, Kulkarni A, Chakraborty S (2020) Assessment of climate change over the Indian region: a report of the Ministry of Earth Sciences (MOES), Government of India (p 226). Springer Nature

  • Kulkarni A (2012) Weakening of Indian summer monsoon rainfall in warming environment. Theoret Appl Climatol 109:447–459

    Article  Google Scholar 

  • Langousis A, Mamalakis A, Puliga M, Deidda R (2016) Threshold detection for the generalized Pareto distribution: review of representative methods and application to the NOAA NCDC daily rainfall database. Water Resour Res 52(4):2659–2681

    Article  Google Scholar 

  • Lee WL, Wang YC, Shiu CJ, Tsai IC, Tu CY, Lan YY, … Hsu HH (2020) Taiwan Earth System Model Version 1: description and evaluation of mean state. Geosci Model Dev 13(9):3887–3904

  • Li Z, Lin X, Cai W (2017) Realism of modelled Indian summer monsoon correlation with the tropical Indo-Pacific affects projected monsoon changes. Sci Rep 7(1):4929

    Article  Google Scholar 

  • Li J, Huo R, Chen H, Zhao Y, Zhao T (2021) Comparative assessment and future prediction using CMIP6 and CMIP5 for annual precipitation and extreme precipitation simulation. Front Earth Sci 9:687976

    Article  Google Scholar 

  • Miller AJ, Cayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) The 1976–77 climate shift of the Pacific Ocean. Oceanography 7(1):21–26

    Article  Google Scholar 

  • Mishra V, Kumar D, Ganguly AR, Sanjay J, Mujumdar M, Krishnan R, Shah RD (2014) Reliability of regional and global climate models to simulate precipitation extremes over India. J Geophys Res 119(15):9301–9323

    Article  Google Scholar 

  • Mishra SK, Sahany S, Salunke P (2017) Linkages between MJO and summer monsoon rainfall over India and surrounding region. Meteorol Atmos Phys 129:283–296

    Article  Google Scholar 

  • Mishra V, Bhatia U, Tiwari AD (2020) Bias-corrected climate projections for South Asia from coupled model intercomparison project-6. Scientific Data 7(1):338

    Article  Google Scholar 

  • Moccia B, Mineo C, Ridolfi E, Russo F, Napolitano F (2021) Probability distributions of daily rainfall extremes in Lazio and Sicily, Italy, and design rainfall inferences. J Hydrol: Regional Studies 33:100771

    Google Scholar 

  • Moustakis Y, Papalexiou SM, Onof CJ, Paschalis A (2021) Seasonality, intensity, and duration of rainfall extremes change in a warmer climate. Earth’s Future 9(3):e2020EF001824

    Article  Google Scholar 

  • Mukherjee S, Aadhar S, Stone D, Mishra V (2018) Increase in extreme precipitation events under anthropogenic warming in India. Weather Climate Extremes 20:45–53

    Article  Google Scholar 

  • Nerantzaki S, Papalexiou SM (2019) Tails of extremes: advancing a graphical method and harnessing big data to assess precipitation extremes. Adv Water Resour. https://doi.org/10.1016/j.advwatres.2019.103448

    Article  Google Scholar 

  • Nerantzaki S, Papalexiou SM (2021) Assessing extremes in hydroclimatology: a review on probabilistic methods. J Hydrol. https://doi.org/10.1016/j.jhydrol.2021.127302

    Article  Google Scholar 

  • Nieboer D (2011) Heuristics of heavy-tailed distributions and the Obesity index. Dissertation. Delft University of Technology

  • O’Neill BC, Tebaldi C, Van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, ... Sanderson BM (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev 9(9):3461–3482.

  • Oruc S (2022) Performance of bias corrected monthly CMIP6 climate projections with different reference period data in Turkey. Acta Geophys 70(2):777–789

    Article  Google Scholar 

  • Pai D, Sridhar L, Rajeevan M, Sreejith O, Satbhai N, Mukhopadhyay B (2014) Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam, 65: 1–18. http://www.imd.gov.in/advertisements/20170320_advt_34. Accessed 27 Dec 2020

  • Papalexiou SM (2022) Rainfall generation revisited: introducing CoSMoS-2s and advancing copula-based intermittent time series modeling. Water Resour Res 58(6):e2021WR031641

    Article  Google Scholar 

  • Papalexiou SM, Koutsoyiannis D (2012) Entropy based derivation of probability distributions: a case study to daily rainfall. Adv Water Resour 45:51–57

    Article  Google Scholar 

  • Papalexiou SM, Koutsoyiannis D (2013) Battle of extreme value distributions: a global survey on extreme daily rainfall. Water Resour Res 49(1):187–201

    Article  Google Scholar 

  • Papalexiou SM, Montanari A (2019) Global and regional increase of precipitation extremes under global warming. Water Resour Res 55(6):4901–4914

    Article  Google Scholar 

  • Papalexiou SM, Koutsoyiannis D, Makropoulos C (2013) How extreme is extreme? An assessment of daily rainfall distribution tails. Hydrol Earth Syst Sci 17(2):851–862. https://doi.org/10.5194/hess-17-851-2013

    Article  Google Scholar 

  • Papalexiou SM, AghaKouchak A, Foufoula-Georgiou E (2018) A diagnostic framework for understanding climatology of tails of hourly precipitation extremes in the United States. Water Resour Res 54:6725–6738. https://doi.org/10.1029/2018WR022732

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644

    Article  Google Scholar 

  • Prajeesh AG, Swapna P, Krishnan R, Ayantika DC, Sandeep N, Manmeet S, ... Sandip I (2021) The Indian summer monsoon and Indian Ocean dipole connection in the IITM Earth system model (IITM-ESM). Climate Dynamics 1–21

  • Prendergast LJ, Gavin K (2014) A review of bridge scour monitoring techniques. J Rock Mech Geotech Eng 6(2):138–149

    Article  Google Scholar 

  • Rajbanshi J, Das S (2021) The variability and teleconnections of meteorological drought in the Indian summer monsoon season: implications for staple crop production. J Hydrol 603:126845

    Article  Google Scholar 

  • Rajulapati CR, Papalexiou SM (2023) Precipitation bias correction: a novel semi-parametric quantile mapping method. Earth and Space Science 10(4):e2023EA002823

    Article  Google Scholar 

  • Rajulapati CR, Papalexiou SM, Clark MP, Razavi S, Tang G, Pomeroy JW (2020) Assessment of extremes in global precipitation products: how reliable are they? J Hydrometeorol 21(12):2855–2873

    Article  Google Scholar 

  • Resnick SI (2007) Heavy-tail phenomena: probabilistic and statistical modeling. Springer Science & Business Media

  • Rosenzweig C, Iglesias A, Yang X et al (2001) Climate Change and Extreme Weather Events; Implications for Food Production, Plant Diseases, and Pests. Clim Chang Hum Health 2:90–104. https://doi.org/10.1023/A:1015086831467

    Article  Google Scholar 

  • Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Terray P, Rajeevan M (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 8:1–11. https://doi.org/10.1038/s41467-017-00744-9

    Article  CAS  Google Scholar 

  • Rubel F, Kottek M (2010) Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z 19(2):135

    Article  Google Scholar 

  • Sabeerali CT, Ajayamohan RS, Bangalath HK, Chen N (2019) Atlantic zonal mode: an emerging source of Indian summer monsoon variability in a warming world. Geophys Res Lett 46(8):4460–4467

    Article  Google Scholar 

  • Saha U, Sateesh M (2022) Rainfall extremes on the rise: observations during 1951–2020 and bias-corrected CMIP6 projections for near-and late 21st century over Indian landmass. J Hydrol 608:127682

    Article  Google Scholar 

  • Saha A, Ghosh S, Sahana AS, Rao EP (2014) Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon. Geophys Res Lett 41(20):7323–7330

    Article  Google Scholar 

  • Salas JD, Anderson ML, Papalexiou SM, Frances F (2020) PMP and climate variability and change: a review. J Hydrol Eng 25(12):03120002

    Article  Google Scholar 

  • Sannan MC, Nageswararao MM, Mohanty UC (2020) Performance evaluation of CORDEX-South Asia simulations and future projections of northeast monsoon rainfall over south peninsular India. Meteorog Atmos Phys 132:743–770

    Article  Google Scholar 

  • Sarkar S, Maity R (2020) Increase in probable maximum precipitation in a changing climate over India. J Hydrol. https://doi.org/10.1016/j.jhydrol.2020.124806

    Article  Google Scholar 

  • Sarkar S, Maity R (2021) Global climate shift in 1970s causes a significant worldwide increase in precipitation extremes. Sci Rep 11(1):1–11

    Article  Google Scholar 

  • Sarkar S, Maity R (2022) Future characteristics of extreme precipitation indicate the dominance of frequency over intensity: a multimodel assessment from CMIP6 across India. J Geophys Res: Atmospheres 127(16):e2021JD035539

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2014) Rainfall extremes: toward reconciliation after the battle of distributions. Water Resour Res 50(1):336–352

    Article  Google Scholar 

  • Sharma PJ, Patel PL, Jothiprakash V (2020) Hydroclimatic teleconnections of large-scale oceanic-atmospheric circulations on hydrometeorological extremes of Tapi Basin, India. Atmos Res 235:104791

    Article  Google Scholar 

  • Singh P, Sinha VSP, Vijhani A, Pahuja N (2018) Vulnerability assessment of urban road network from urban flood. Int J Dis Risk Reduction 28:237–250

    Article  Google Scholar 

  • Smith JA, Villarini G, Baeck ML (2011) Mixture distributions and the hydroclimatology of extreme rainfall and flooding in the eastern United States. J Hydrometeorol 12(2) 294-309

  • Suman M, Maity R (2020) Southward shift of precipitation extremes over south Asia: Evidences from CORDEX data. Sci Rep 10(1):6452

    Article  CAS  Google Scholar 

  • Supharatid S, Nafung J, Aribarg T (2021) Projected changes in temperature and precipitation over mainland Southeast Asia by CMIP6 models. J Water Climate Change 13:1–20. https://doi.org/10.2166/wcc.2021.015

    Article  Google Scholar 

  • Swapna P, Krishnan R, Sandeep N, Prajeesh AG, Ayantika DC, Manmeet S, Vellore R (2018) Long-term climate simulations using the IITM Earth system model (IITM-ESMv2) with focus on the south Asian monsoon. J Adv Model Earth Syst 10(5):1127–1149

    Article  Google Scholar 

  • Tabari H (2020) Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep 10(1):1–10

    Google Scholar 

  • Tatebe H, Ogura T, Nitta T, Komuro Y, Ogochi K, Takemura T, … Kimoto M (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci Model Dev 12(7):2727–2765

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Clim Change 79(3–4):185–211

    Article  Google Scholar 

  • Villarini G (2012) Analyses of annual and seasonal maximum daily rainfall accumulations for Ukraine, Moldova, and Romania. Int J Climatol 32(14):2213–2226

    Article  Google Scholar 

  • Vinnarasi R, Dhanya CT (2016) Changing characteristics of extreme wet and dry spells of Indian monsoon rainfall. J Geophys Res: Atmospheres 121(5):2146–2160

    Article  Google Scholar 

  • Vinod D, Agilan V (2022) Impact of climate change on precipitation over India using CMIP-6 climate models. In Innovative trends in hydrological and environmental systems: select proceedings of ITHES 2021 (pp 155–164). Singapore: Springer Nature Singapore

  • VishnuPriya MS, Agilan V (2022) Evaluation of change factor methods in downscaling extreme precipitation over India. J Hydrol 614:128531

    Article  Google Scholar 

  • Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, ... Roberts N (2014) Future changes to the intensity and frequency of short‐duration extreme rainfall. Rev Geophys 52(3):522–555

  • Wietzke LM, Merz B, Gerlitz L, Kreibich H, Guse B, Castellarin A, Vorogushyn S (2020) Comparative analysis of scalar upper tail indicators. Hydrol Sci J 65(10):1625–1639. https://doi.org/10.1080/02626667.2020.1769104

    Article  Google Scholar 

  • Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, … Liu X (2019) The Beijing Climate Center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12(4):1573–1600

  • Yaduvanshi A, Bendapudi R, Nkemelang T, New M (2021) Temperature and rainfall extremes change under current and future warming global warming levels across Indian climate zones. Weather Climate Extremes 31:100291

    Article  Google Scholar 

  • Yukimoto S, Kawai H, Koshiro T, Oshima N, Yoshida K, Urakawa S, ... Ishii M (2019) The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: description and basic evaluation of the physical component. J Meteorol Soc Japan Ser II 97(5):931–965

  • Yun KS, Heo KY, Chu JE, Ha KJ, Lee EJ, Choi Y, Kitoh A (2012) Changes in climate classification and extreme climate indices from a high-resolution future projection in Korea. Asia-Pac J Atmos Sci 48:213–226

    Article  Google Scholar 

  • Zarrin A, Dadashi-Roudbari A (2021) Projection of future extreme precipitation in Iran based on CMIP6 multimodel ensemble. Theor Appl Climatol 144:643-660

  • Ziehn T, Chamberlain MA, Law RM, Lenton A, Bodman RW, Dix M, ... Srbinovsky J (2020) The Australian earth system model: ACCESS-ESM1. 5. J Southern Hemisphere Earth Syst Sci 70(1):193–214

Download references

Acknowledgements

The authors are obliged to the Indian Institute of Technology, Ropar (IIT Ropar) for facilitating this study. The authors are thankful to the India Meteorological Department for providing the precipitation data. The authors are thankful to an anonymous reviewer for the constructive and encouraging comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Neha Gupta. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sagar Rohidas Chavan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 480 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Chavan, S.R. Assessing future changes in daily precipitation tails over India: insights from multimodel assessment of CMIP6 GCMs. Theor Appl Climatol 155, 3791–3809 (2024). https://doi.org/10.1007/s00704-024-04849-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-024-04849-2

Navigation