Skip to main content
Log in

Simulation of extreme precipitation changes in Central Asia using CMIP6 under different climate scenarios

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Central Asia has a dry climate, scarce water resources, extremely fragile ecosystems, and frequent extreme precipitation events. Using the data of 22 global climate models in the CMIP6 plan, the trend of the extreme precipitation index under four Shared Socioeconomic Pathways (SSPs) was estimated by calculating eight extreme precipitation indices in Central Asia and optimizing the best multi-model set using the Taylor evaluation and comprehensive score. The results showed that in Central Asia, the CMIP6 mode and multi-mode collection can reasonably reproduce the regional differences of various severe precipitation indices. However, these results only performed well for consecutive dry days (CDD) and annual total precipitation (PRCPTOT), but poorly for the replication of extreme high- and low-value regions. We found that the simulation effect of the multi-mode ensemble results was better than that of a single mode, and that CMIP6 can roughly depict the evolving characteristics of extreme precipitation events. However, the CMIP6 data performed poorly in terms of spatial divergence ability characteristics. According to the estimated results, mountainous regions have experienced considerable changes, and a significant increase in the range of change was observed for severe precipitation (consecutive wet days (CWD), single day maximum precipitation (Rx1day), and PRCPTOT) in wet and dry regions during the twenty-first century. Simultaneously, the humidification trend accelerated after 2050, and four shared socioeconomic paths showed similar trends; however, the extreme precipitation rate was higher under the high forcing path. Consecutive dry days (CDD) in Central Asia decreased by 90% under SSP5-8.5 relative to SSP1-2.6, whereas CWD, Rx1day, and PRCPTOT increased by 20%, 150%, and 118%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akinsanola AA, Ongoma V, Kooperman GJ (2021) Evaluation of CMIP6 models in simulating the statistics of extreme precipitation over Eastern Africa. Atmos Res 254:105509

    Google Scholar 

  • Barrett CB, Santos P (2014) The impact of changing rainfall variability on resource-dependent wealth dynamics. Ecol Econ 105:48–54

    Google Scholar 

  • Carvalho D, Rafael S, Monteiro A, Rodrigues V, Lopes M, Rocha A (2022) How well have CMIP3, CMIP5 and CMIP6 future climate projections portrayed the recently observed warming. Sci Rep 12(1):11983

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Wang J, Jin L, Zhang Q, Jing LI, Chen JJ (2009) Rapid warming in mid-latitude central Asia for the past 100 years. Adv Isot Geochem 003(001):42–50

    CAS  Google Scholar 

  • Chen F, Wei H, Liya J, Jianhui C, Jinsong WJ (2011) Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci China Earth Sci 054(012):1812–1821

    ADS  Google Scholar 

  • Chen Y, Li Z, Fan Y, Wang H, Deng H (2015) Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ Res 139:11–19

    CAS  PubMed  Google Scholar 

  • Christian JI, Martin ER, Basara JB, Furtado JC, Otkin JA, Lowman LEL, Hunt ED, Mishra V, Xiao X (2023) Global projections of flash drought show increased risk in a warming climate. Commun Earth Environ 4(1):165

    ADS  Google Scholar 

  • Church J, Clark P, Cazenave A, Gregory J, Jevrejeva S, Levermann A, Merrifield M, Milne G, Nerem R, Nunn P, Payne A, Pfeffer W, Stammer D, Alakkat U (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Sea Level Change 1138–1191

  • Dai A, Trenberth KE, Karl TR (1998) Global variations in droughts and wet spells: 1900–1995. Geophys Res Lett 25(17):3367–3370

    ADS  Google Scholar 

  • Du H, Zhou C, Tang H, Jin X, Chen D, Jiang P, Li M (2021) Simulation and estimation of future precipitation changes in arid regions: a case study of Xinjiang, Northwest China. Clim Chang 167(3):43

    ADS  Google Scholar 

  • Elguindi N, Grundstein A, Bernardes S, Turuncoglu U, Feddema J (2014) Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification. Clim Change 122(4):523–538

    ADS  Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958

    ADS  Google Scholar 

  • Fan L-J, Yan Z-W, Chen D, Li Z (2023) Assessment of total and extreme precipitation over central Asia via statistical downscaling: added value and multi-model ensemble projection. Adv Clim Chang Res 14(1):62–76

    Google Scholar 

  • Fang W (2020) Response of precipitation change in Central Asia to emission scenarios consistent with the Paris Agreement. Acta Geogr Sin 75:01 (in Chinese)

    Google Scholar 

  • Fu J, Jian Y, Wang X, Li L, Ciais P, Zscheischler J, Wang Y, Tang Y, Müller C, Webber H, Yang B, Wu Y, Wang Q, Cui X, Huang W, Liu Y, Zhao P, Piao S, Zhou F (2023) Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades. Nature Food 4(5):416–426

    PubMed  Google Scholar 

  • Gidden MJ, Riahi K, Smith SJ, Fujimori S, Luderer G, Kriegler E, van Vuuren DP, van den Berg M, Feng L, Klein D, Calvin K, Doelman JC, Frank S, Fricko O, Harmsen M, Hasegawa T, Havlik P, Hilaire J, Hoesly R, Horing J, Popp A, Stehfest E, Takahashi K (2019) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev 12(4):1443–1475

    ADS  CAS  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(8)

  • Guo H, Bao A, Chen T, Zheng G, Wang Y, Jiang L, De Maeyer P (2021) Assessment of CMIP6 in simulating precipitation over arid Central Asia. Atmos Res 252:105451

    Google Scholar 

  • Gvzelnur Y (2023) CMIP6 model-projected future changes in extreme precipitation over Central Asia in the 21st century. Clim Environ Res 28(3):286–302

    Google Scholar 

  • Hasegawa T, Sakurai G, Fujimori S, Takahashi K, Hijioka Y, Masui T (2021) Extreme climate events increase risk of global food insecurity and adaptation needs. Nature Food 2(8):587–595

    PubMed  Google Scholar 

  • Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

    Article  ADS  Google Scholar 

  • Hua L, Zhao T, Zhong L (2022) Future changes in drought over Central Asia under CMIP6 forcing scenarios. J Hydrol: Reg Stud 43:101191

    Google Scholar 

  • Huang J, Li Y, Fu C, Chen F, Fu Q, Dai A, Shinoda M, Ma Z, Guo W, Li Z, Zhang L, Liu Y, Yu H, He Y, Xie Y, Guan X, Ji M, Lin L, Wang S, Yan H, Wang G (2017) Dryland climate change: recent progress and challenges. Rev Geophys 55(3):719–778

    ADS  Google Scholar 

  • IPCC (2021) Climate Change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press. https://doi.org/10.1017/9781009157896

  • IPCC (2022) Climate Change 2022: mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change [P.R.Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009157926

  • Jiang J, Zhou T, Chen X, Zhang L (2020) Future changes in precipitation over Central Asia based on CMIP6 projections. Environ Res Lett 15(5):054009

    ADS  Google Scholar 

  • Juan WH (2020) The Belt and road region climate change: facts, impacts and possible risks. Trans Atmos Sci 43(01):1–9

    Google Scholar 

  • Ke XU, Riyu LU, Mao J, Chen RJ (2019) Circulation anomalies in the mid–high latitudes responsible for the extremely hot summer of 2018 over northeast Asia. Atmospher Ocean Sci Lett 12(4):231–237

    Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119(2):345–357

    ADS  Google Scholar 

  • Kim I-W, Oh J, Woo S, Kripalani RH (2019) Evaluation of precipitation extremes over the Asian domain: observation and modelling studies. Clim Dyn 52(3):1317–1342

    Google Scholar 

  • Kim Y-H, Min S-K, Zhang X, Sillmann J, Sandstad M (2020) Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim Extremes 29:100269

    Google Scholar 

  • Landman W (2010) Climate Change 2007: the physical science basis. S Afr Geogr J 92:86–87

    Google Scholar 

  • Lavers DA, Simmons A, Vamborg F, Rodwell MJ (2022) An evaluation of ERA5 precipitation for climate monitoring. Q J R Meteorol Soc 148(748):3152–3165

    ADS  Google Scholar 

  • Lee Y, Paek J, Park J-S, Boo K-O (2020) Changes in temperature and rainfall extremes across East Asia in the CMIP5 ensemble. Theoret Appl Climatol 141(1):143–155

    ADS  Google Scholar 

  • Lesk C, Anderson W, Rigden A, Coast O, Jägermeyr J, McDermid S, Davis KF, Konar M (2022) Compound heat and moisture extreme impacts on global crop yields under climate change. Nat Rev Earth Environ 3(12):872–889

    ADS  Google Scholar 

  • Li Y, Yan X (2017) Statistical downscaling of monthly mean temperature for Kazakhstan in Central Asia. Clim Res 72(2):101–110

    Google Scholar 

  • Lioubimtseva E, Henebry GM (2009) Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. J Arid Environ 73(11):963–977

    Google Scholar 

  • Liu Y, Geng X, Hao Z, Zheng J (2020) Changes in Climate Extremes in Central Asia under 1.5 and 2 °C Global Warming and their Impacts on Agricultural Productions. Atmosphere 11(10):1076

  • Luo M, Liu T, Frankl A, Duan Y, Meng F, Bao A, Kurban A, De Maeyer P (2018) Defining spatiotemporal characteristics of climate change trends from downscaled GCMs ensembles: how climate change reacts in Xinjiang, China. Int J Climatol 38(5):2538–2553

    Google Scholar 

  • Maurer EP, Hidalgo HG (2008) Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods. Hydrol Earth Syst Sci 12(2):551–563

    ADS  Google Scholar 

  • Mei C, Liu J, Chen M-T, Wang H, Li M, Yu Y (2018) Multi-decadal spatial and temporal changes of extreme precipitation patterns in northern China (Jing-Jin-Ji district, 1960–2013). Quatern Int 476:1–13

    Google Scholar 

  • Meng L, Zhao Y, Huang A, Wang T, Wu YJERC (2020) Impact of South Asian monsoon on summer dust weather occurrence over the Tarim basin in Northwest China. Environ Res Commun. https://doi.org/10.1088/2515-7620/abbd89

    Article  Google Scholar 

  • Molg T, Maussion F, Scherer D (2013) Mid-latitude westerlies as a driver of glacier variability in monsoonal high Asia. Nat Clim Chang 4(1):68–73

    ADS  Google Scholar 

  • Ombadi M, Risser MD, Rhoades AM, Varadharajan C (2023) A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature 619(7969):305–310

    ADS  CAS  PubMed  Google Scholar 

  • O’Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque JF, Lowe J, Meehl GA, Moss R, Riahi K, Sanderson BM (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev 9(9):3461–3482

    ADS  Google Scholar 

  • Peng D, Zhou T, Zhang L, Zhang W, Chen X (2020) Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5 °C less global warming. Clim Dyn 54(1):543–560

    Google Scholar 

  • Prein AF, Rasmussen RM, Ikeda K, Liu C, Clark MP, Holland GJ (2017) The future intensification of hourly precipitation extremes. Nat Clim Change 7(1):48–52

    ADS  Google Scholar 

  • Qiu Y, Feng J, Yan Z, Wang J, Li Z (2022) High-resolution dynamical downscaling for regional climate projection in Central Asia based on bias-corrected multiple GCMs. Clim Dyn 58(3):777–791

    Google Scholar 

  • Reyer CPO, Otto IM, Adams S, Albrecht T, Baarsch F, Cartsburg M, Coumou D, Eden A, Ludi E, Marcus R, Mengel M, Mosello B, Robinson A, Schleussner C-F, Serdeczny O, Stagl J (2017) Climate change impacts in Central Asia and their implications for development. Reg Environ Change 17(6):1639–1650

    Google Scholar 

  • Riahi K, van Vuuren DP, Kriegler E, Edmonds J, O’Neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma JC, Kc S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Da Silva LA, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Strefler J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-Campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Chang 42:153–168

    Google Scholar 

  • Schuenemann KC, Cassano JJ (2009) Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 1. Evaluation of late 20th century simulations from IPCC models. J Geophys Res 114(D20):D20113:1-D20113:20

  • Sheffield J, Goteti G, Wood EF (2006) Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19(13):3088–3111

    ADS  Google Scholar 

  • Tank AMGK, Peterson TC, Quadir DA, Dorji S, Zou X, Tang H, Santhosh K, Joshi UR, Jaswal AK, Kolli RK, Sikder AB, Deshpande NR, Revadekar JV, Yeleuova K, Vandasheva S, Faleyeva M, Gomboluudev P, Budhathoki KP, Hussain A, Afzaal M, Chandrapala L, Anvar H, Amanmurad D, Asanova VS, Jones PD, New MG, Spektorman T (2006) Changes in daily temperature and precipitation extremes in Central and South Asia. J Geophys Res Atmos 111(d16):D16105-1-D16105-8

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    ADS  Google Scholar 

  • Thackeray CW, Hall A, Norris J, Chen D (2022) Constraining the increased frequency of global precipitation extremes under warming. Nat Clim Chang 12:441–448

    ADS  Google Scholar 

  • Thrasher B, Maurer EP, McKellar C, Duffy PB (2012) Technical note: bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16(9):3309–3314

    ADS  Google Scholar 

  • Thrasher B, Wang W, Michaelis A, Melton F, Lee T, Nemani R (2022) NASA global daily downscaled projections, CMIP6. Sci Data 9(1):262

    PubMed  PubMed Central  Google Scholar 

  • van Vuuren DP, Riahi K, Moss R, Edmonds J, Thomson A, Nakicenovic N, Kram T, Berkhout F, Swart R, Janetos A, Rose SK, Arnell N (2012) A proposal for a new scenario framework to support research and assessment in different climate research communities. Glob Environ Chang 22(1):21–35

    Google Scholar 

  • Veronika E, Sandrine B, Meehl GA, Senior CA, Bjorn S, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958

    ADS  Google Scholar 

  • Wallach D, Martre P, Liu B, Asseng S, Ewert F, Thorburn PJ, van Ittersum M, Aggarwal PK, Ahmed M, Basso B, Biernath C, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Fitzgerald GJ, Gao Y, Garcia-Vila M, Gayler S, Girousse C, Hoogenboom G, Horan H, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Müller C, Naresh Kumar S, Nendel C, O’Leary GJ, Palosuo T, Priesack E, Ripoche D, Rötter RP, Semenov MA, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Wolf J, Zhang Z (2018) Multimodel ensembles improve predictions of crop–environment–management interactions. Glob Change Biol 24(11):5072–5083

  • Wang Q, Zhai P (2022) CMIP6 projections of the “Warming-Wetting” trend in Northwest China and related extreme events based on observational constraints. J Meteorol Res 36(2):239–250

    Google Scholar 

  • Wang Y, Zhou B, Qin D, Wu J, Gao R, Song L (2017) Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Adv Atmos Sci 34(3):289–305

    Google Scholar 

  • Wang L, Li Y, Li M, Li L, Liu F, Liu DL, Pulatov B (2022) Projection of precipitation extremes in China’s mainland based on the statistical downscaled data from 27 GCMs in CMIP6. Atmos Res 280:106462

    Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change 62(1/3):189–216

  • Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long-range experimental hydrologic forecasting for the eastern United States. J Geophys Res Atmos 107(D20):4429

    ADS  Google Scholar 

  • Yao J, Chen Y, Chen J, Zhao Y, Tuoliewubieke D, Li J, Yang L, Mao W (2021) Intensification of extreme precipitation in arid Central Asia. J Hydrol 598:125760

    Google Scholar 

  • Zhang WX, Zhou TJ (2020) Increasing impacts from extreme precipitation onpopulation ver China with global warming. Sci Bull 65(3):243–252

    Google Scholar 

  • Zhang X, Hegerl G, Zwiers FW, Kenyon J (2005) Avoiding Inhomogeneity in Percentile-Based Indices of Temperature Extremes. J Clim 18(11):1641–1651

    ADS  Google Scholar 

  • Zhang M, Chen Y, Shen Y, Li Y (2017) Changes of precipitation extremes in arid Central Asia. Quatern Int 436:16–27

    Google Scholar 

  • Zhang M, Yu H, King AD, Wei Y, Huang J, Ren Y (2020) Correction to: greater probability of extreme precipitation under 1.5 °C and 2 °C warming limits over East-Central Asia. Clim Change 162(2):621–621

    ADS  Google Scholar 

  • Zhang J, Zhao T, Zhou L, Ran L (2021) historical changes and future projections of extreme temperature and precipitation along the sichuan-tibet railway. J Meteorol Res 35(3):402–415

    Google Scholar 

  • Zhang XL, Wang XX, Hua LJ, Jiang DB (2023) Projections of Temperature and Precipitation over Xinjiang Based on CMIP6 Models. Chin J Atmos Sci 47(2):12 (in Chinese)

    Google Scholar 

  • Zhao WQ, Mao YM, Cao DB (2022) Review of increasing precipitation in Central Asia and its possible mechanism. Trans Atmos Sci 46(1):18–29

    Google Scholar 

  • Zhou BT, Xu Y, Han ZY, Shi Y, Wu J, Li RK (2020) CMIP5 projected changes in mean and extreme climate in the belt and road region. Transactions of Atmospheric Sciences 43(01):255–264

    Google Scholar 

  • Zhu X, Wei Z, Dong W, Ji Z, Wen X, Zheng Z, Yan D, Chen D (2020) Dynamical downscaling simulation and projection for mean and extreme temperature and precipitation over central Asia. Clim Dyn 54(7):3279–3306

    Google Scholar 

  • Zhuang YH, Zhang JY, Liang J (2021) Projected temperature and precipitation changes over major land regions of the belt and road initiative under the 1.5 °C and 2 °C climate targets by the CMIP6 multi-model ensemble. Clim Environ Res 26(4):374–390 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Regional Collaborative Innovation Program of Xinjiang Province (2022E01014) for the sponsorship.

Funding

This research was funded by the 2022 Special Regional Collaborative Innovation in Xinjiang Uygur Autonomous Region (2022E01014).

Author information

Authors and Affiliations

Authors

Contributions

Xin Huang: conceptualization, methodology, software, data curation, writing—original draft preparation.

Yonghui Wang: visualization, investigation, writing—reviewing and editing.

Xiaofei Ma: methodology, software, data curation, writing—reviewing and editing.

Xiaofei Ma and Yonghui Wang: supervision, software, validation, writing—reviewing and editing.

Corresponding author

Correspondence to Yonghui Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Wang, Y. & Ma, X. Simulation of extreme precipitation changes in Central Asia using CMIP6 under different climate scenarios. Theor Appl Climatol 155, 3203–3219 (2024). https://doi.org/10.1007/s00704-023-04802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04802-9

Navigation