Skip to main content

Advertisement

Log in

Evaluating the effectiveness of CHIRPS data for hydroclimatic studies

  • Review
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Long-term gridded precipitation products (GPPs) are crucial for climatology and hydrological research to overcome the limitations of gauge observations. Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) provides long-term daily precipitation data over the globe from 1981 to near-present, but its reliability varies across regions. This review aims to summarize the performance of CHIRPS from 123 research articles that mainly published between 2015 and 2021.The findings show that the number of CHIRPS validation studies has been increased dramatically in the past few years. These studies were primarily conducted in China, Ethiopia, Kenya, Uganda, and India, while a relatively few studies in North America, Central Asia, and Europe. The performance of CHIRPS varied depending on geographical location and climate condition, with greater performance in Africa. In contrast to other GPPs, CHIRPS is always not the best product, but it is considerably well in capturing monthly precipitation and is suitable for assessing drought. But, there are some common limitations such as less effectiveness across regions with sparse gauges and complex terrain and difficulty in detecting extremely high precipitation events. Future research directions on this topic should focus on (1) enhancing CHIPRS through bias correction and downscaling, (2) validating CHIRPS for extreme indices’ calculations and relate to large-scale atmospheric circulations like ENSO, (3) evaluating the capability of CHIRPS in hydrological modelling, and (4) further validating CHIRPS under various topographical and climate conditions as well as other precipitation products. This review can act as a reference to scientists who wish to apply CHIRPS in their climatology analysis and hydroclimatic modelling as well as the developers to further improve the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

CHIRPS can be retrieved from the website (https://www.chc.ucsb.edu/data/chirps).

References

  • Abdelmoneim H, Soliman MR, Moghazy HM (2020) Evaluation of TRMM 3B42V7 and CHIRPS satellite precipitation products as an input for hydrological model over Eastern Nile Basin. Earth Syst Environ 4(4):685–698

    Google Scholar 

  • Adeyeri OE, Lawinb AE, Lauxc P, Isholad KA, Igee SO (2019) Analysis of climate extreme indices over the Komadugu-Yobe basin, Lake Chad region: past and future occurrences. Weather Clim Extremes 23:100194

    Google Scholar 

  • Adeyeri OE, Laux P, Ishola KA, Zhou W, Balogun IA, Adeyewa ZD, Kunstmann H (2022) Homogenising meteorological variables: impact on trends and associated climate indices. J Hydrol 607:127585

    Google Scholar 

  • Agutu NO, Awange JL, Zerihun A, Ndehedehe CE, Kuhn M, Fukuda Y (2017) Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens Environ 194:287–302

    ADS  Google Scholar 

  • Aksu H, Akgül MA (2020) Performance evaluation of CHIRPS satellite precipitation estimates over Turkey. Theor Appl Climatol 142(1–2):71–84

    ADS  Google Scholar 

  • Al-Falahi AH, Saddique N, Spank U, Gebrechorkos SH, Bernhofer C (2020) Evaluation the performance of several gridded precipitation products over the highland region of Yemen for water resources management. Remote Sens 12(18):2984

    ADS  Google Scholar 

  • Alahacoon N, Edirisinghe M (2021) Spatial variability of rainfall trends in Sri Lanka from 1989 to 2019 as an indication of climate change. ISPRS Int J Geo-Inform 10(2):84

    Google Scholar 

  • Alahacoon N, Edirisinghe M, Ranagalage M (2021) Satellite-based meteorological and agricultural drought monitoring for agricultural sustainability in Sri Lanka. Sustainability 13(6):3427

    Google Scholar 

  • Alejo LA, Alejandro AS (2021) Validating CHIRPS ability to estimate rainfall amount and detect rainfall occurrences in the Philippines. Theor Appl Climatol 145(3–4):967–977

    ADS  Google Scholar 

  • Alemu ML, Worqlul AW, Zimale FA, Tilahun SA, Steenhuis TS (2020) Water balance for a tropical lake in the volcanic highlands: Lake Tana Ethiopia. Water 12(10):2737

    Google Scholar 

  • Alemu MM, Bawoke GT (2020) Analysis of spatial variability and temporal trends of rainfall in Amhara region, Ethiopia. J Water Clim Change 11(4):1505–1520

    Google Scholar 

  • Alquraish MM, Khadr M (2021) Remote-sensing-based streamflow forecasting using artificial neural network and support vector machine models. Remote Sens 13(20):4147

    ADS  Google Scholar 

  • An Y, Zhao W, Li C, Liu Y (2020) Evaluation of six satellite and reanalysis precipitation products using gauge observations over the Yellow River Basin China. Atmosphere 11(11):1223

    ADS  Google Scholar 

  • Atiah WA, Amekudzi LK, Aryee JNA, Preko K, Danuor SK (2020a) Validation of satellite and merged rainfall data over Ghana West Africa. Atmosphere 11(8):859

    ADS  Google Scholar 

  • Atiah WA, Tsidu GM, Amekudzi LK (2020b) Investigating the merits of gauge and satellite rainfall data at local scales in Ghana, West Africa. Weather Clim Extremes 30:100292

  • Ayehu GT, Tadesse T, Gessesse B, Dinku T (2018) Validation of new satellite rainfall products over the Upper Blue Nile Basin Ethiopia. Atmos Meas Tech 11(4):1921–1936

    Google Scholar 

  • Ayoub AB, Tangang F, Juneng L, Tan ML, Chung JX (2020) Evaluation of gridded precipitation datasets in Malaysia. Remote Sens 12(4):613

    ADS  Google Scholar 

  • Bai L, Shi C, Li L, Yang Y, Wu J (2018) Accuracy of CHIRPS satellite-rainfall products over Mainland China. Remote Sens 10(3):362

    ADS  Google Scholar 

  • Banerjee A, Chen R, Meadows ME, Singh RB, Mal S, Sengupta D (2020) An analysis of long-term rainfall trends and variability in the Uttarakhand Himalaya using Google Earth Engine. Remote Sens 12(4):709

    ADS  Google Scholar 

  • Basheer M, Elagib NA (2019) Performance of satellite-based and GPCC 7.0 rainfall products in an extremely data-scarce country in the Nile Basin. Atmos Res 215:128–140

    Google Scholar 

  • Bayissa Y, Tadesse T, Demisse G, Shiferaw A (2017) Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin Ethiopia. Remote Sens 9(7):669

    ADS  Google Scholar 

  • Beck HE, Wood EF, Pan M, Fisher CK, Miralles DG, van Dijk AIJM, McVicar TR, Adler RF (2019) MSWEP V2 Global 3-Hourly 0.1° precipitation: methodology and quantitative assessment. Bull Am Meteorol Soc 100(3):473–500

    ADS  Google Scholar 

  • Belay AS, Fenta AA, Yenehun A, Nigate F, Tilahun SA, Moges MM, Dessie M, Adgo E, Nyssen J, Chen M, Griensven AV, Walraevens K (2019) Evaluation and application of multi-source satellite rainfall product CHIRPS to assess spatio-temporal rainfall variability on data-sparse western margins of Ethiopian Highlands. Remote Sens 11(22):2688

    ADS  Google Scholar 

  • Belayneh A, Sintayehu G, Gedam K, Muluken T (2020) Evaluation of satellite precipitation products using HEC-HMS model. Model Earth Syst Environ 6(4):2015–2032

    Google Scholar 

  • Bichet A, Diedhiou A (2018a) Less frequent and more intense rainfall along the coast of the Gulf of Guinea in West and Central Africa (1981–2014). Clim Res 76(3):191–201

    Google Scholar 

  • Bichet A, Diedhiou A (2018b) West African Sahel has become wetter during the last 30 years, but dry spells are shorter and more frequent. Clim Res 75(2):155–162

    Google Scholar 

  • Bohnenstengel SI, Schlünzen KH, Beyrich F (2011) Representativity of in situ precipitation measurements – a case study for the LITFASS area in North-Eastern Germany. J Hydrol 400(3–4):387–395

    Google Scholar 

  • Burton C, Rifai S, Malhi Y (2018) Inter-comparison and assessment of gridded climate products over tropical forests during the 2015/2016 El Nino. Philos Trans R Soc Lond B Biol Sci 373(1760):20170406

    PubMed  PubMed Central  Google Scholar 

  • Caroletti GN, Coscarelli R, Caloiero T (2019) Validation of satellite, reanalysis and RCM data of monthly rainfall in Calabria (Southern Italy). Remote Sensing 11(13):1625

  • Carvalho MÂCCD, Uliana EM, Silva DDD, Aires URV, Martins CADS, Sousa Junior MFD, Cruz IFD, Mendes MADSA (2020) Drought monitoring based on remote sensing in a grain-producing region in the Cerrado-Amazon transition Brazil. Water 12(12):3366

    Google Scholar 

  • Cattani E, Ferguglia O, Merino A, Levizzani V (2021) Precipitation products’ inter–comparison over East and Southern Africa 1983–2017. Remote Sens 13(21):4419

    ADS  Google Scholar 

  • Cattani E, Merino A, Guijarro J, Levizzani V (2018) East Africa rainfall trends and variability 1983–2015 using three long-term satellite products. Remote Sens 10(6):931

    ADS  Google Scholar 

  • Dandridge C, Lakshmi V, Bolten J, Srinivasan R (2019) Evaluation of satellite-based rainfall estimates in the Lower Mekong River Basin (Southeast Asia). Remote Sens 11(22):2709

    ADS  Google Scholar 

  • Dembélé M, Schaefli B, van de Giesen N, Mariéthoz G (2020) Suitability of 17 gridded rainfall and temperature datasets for large-scale hydrological modelling in West Africa. Hydrol Earth Syst Sci 24(11):5379–5406

    ADS  Google Scholar 

  • Fioravanti G, Piervitali E, Desiato F (2019) A new homogenized daily data set for temperature variability assessment in Italy. Int J Climatol 39(15):5635–5654

  • Dhanesh Y, Bindhu VM, Senent-Aparicio J, Brighenti TM, Ayana E, Smitha PS, Fei C, Srinivasan R (2020) A comparative evaluation of the performance of CHIRPS and CFSR data for different climate zones using the SWAT model. Remote Sens 12(18):3088

    ADS  Google Scholar 

  • Dinku T, Funk C, Peterson P, Maidment R, Tadesse T, Gadain H, Ceccato P (2018) Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q J R Meteorol Soc 144(S1):292–312

    ADS  Google Scholar 

  • du Plessis JA, Kibii JK (2021) Applicability of CHIRPS-based satellite rainfall estimates for South Africa. J South African Inst Civil Eng 63(3):1–12

    Google Scholar 

  • Duan Z, Liu J, Tuo Y, Chiogna G, Disse M (2016) Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci Total Environ 573:1536–1553

    ADS  CAS  PubMed  Google Scholar 

  • Duan Z, Tuo Y, Liu J, Gao H, Song X, Zhang Z, Yang L, Mekonnen DF (2019) Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. J Hydrol 569:612–626

    Google Scholar 

  • Dubache G, Asmerom B, Ullah W, Ogwang BA, Amiraslani F, Weijun Z, Gul C (2021) Testing the accuracy of high-resolution satellite-based and numerical model output precipitation products over Ethiopia. Theoret Appl Climatol 146(3–4):1127–1142

    ADS  Google Scholar 

  • Essou GRC, Arsenault R, Brissette FP (2016) Comparison of climate datasets for lumped hydrological modeling over the continental United States. J Hydrol 537:334–345

    Google Scholar 

  • Fall CMN, Lavaysse C, Drame MS, Panthou G, Gaye AT (2021) Wet and dry spells in Senegal: comparison of detection based on satellite products, reanalysis, and in situ estimates. Nat Hazard 21(3):1051–1069

    Google Scholar 

  • Feke BE, Terefe T, Ture K, Hunde D (2021) Spatiotemporal variability and time series trends of rainfall over northwestern parts of Ethiopia: the case of Horro Guduru Wollega Zone. Environ Monit Assess 193(6):367

    PubMed  Google Scholar 

  • Fenta AA, Yasuda H, Shimizu K, Haregeweyn N, Kawai T, Sultan D, Ebabu K, Belay AS (2017) Spatial distribution and temporal trends of rainfall and erosivity in the Eastern Africa region. Hydrol Process 31(25):4555–4567

    ADS  Google Scholar 

  • Forootan E, Khandu, Awange JL, Schumacher M, Anyah RO, van Dijk AIJM, Kusche J (2016) Quantifying the impacts of ENSO and IOD on rain gauge and remotely sensed precipitation products over Australia. Remote Sens Environ 172:50–666

    ADS  Google Scholar 

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations–a new environmental record for monitoring extremes. Sci Data 2(1):21

    Google Scholar 

  • Funk CC, Peterson PJ, Landsfeld MF, Pedreros DH, Verdin JP, Rowland JD, Romero BE, Husak GJ, Michaelsen JC, Verdin AP (2014) A quasi-global precipitation time series for drought monitoring. U.S. Geological Survey Data Series 834:4. https://doi.org/10.3133/ds832

  • Gao F, Zhang Y, Ren X, Yao Y, Hao Z, Cai W (2018) Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin China. Nat Hazards 92(1):155–172

    Google Scholar 

  • Gebrechorkos SH, Hülsmann S, Bernhofer C (2018) Evaluation of multiple climate data sources for managing environmental resources in East Africa. Hydrol Earth Syst Sci 22(8):4547–4564

    ADS  Google Scholar 

  • Gebremedhin MA, Lubczynski MW, Maathuis BHP, Teka D (2021) Novel approach to integrate daily satellite rainfall with in-situ rainfall, Upper Tekeze Basin Ethiopia. Atmos Res 248:105135

    Google Scholar 

  • Ghatak D, Zaitchik B, Kumar S, Matin MA, Bajracharya B, Hain C, Anderson M (2018) Influence of precipitation forcing uncertainty on hydrological simulations with the NASA South Asia Land Data Assimilation System. Hydrology 5(4):57

    Google Scholar 

  • Ghozat A, Sharafati A, Hosseini SA (2020) Long-term spatiotemporal evaluation of CHIRPS satellite precipitation product over different climatic regions of Iran. Theoret Appl Climatol 143(1–2):211–225

    ADS  Google Scholar 

  • Goshime DW, Absi R, Ledésert B (2019) Evaluation and bias correction of CHIRP rainfall estimate for rainfall-runoff simulation over Lake Ziway Watershed Ethiopia. Hydrology 6(3):68

    Google Scholar 

  • Gunathilake MB, Zamri MNM, Alagiyawanna TP, Samarasinghe JT, Baddewela PK, Babel MS, Jha MK, Rathnayake US (2021) Hydrologic utility of satellite-based and gauge-based gridded precipitation products in the Huai Bang Sai watershed of Northeastern Thailand. Hydrology 8(4):165

    Google Scholar 

  • Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7(1):109

    PubMed  PubMed Central  Google Scholar 

  • Harrison L, Funk C, Peterson P (2019) Identifying changing precipitation extremes in Sub-Saharan Africa with gauge and satellite products. Environ Res Lett 14(8):085007

  • He K, Ma Z, Zhao R, Biswas A, Teng H, Xu J, Yu W, Shi Z (2018) A methodological framework to retrospectively obtain downscaled precipitation estimates over the Tibetan Plateau. Remote Sens 10(12):1974

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut JN (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    ADS  Google Scholar 

  • Hordofa AT, Leta OT, Alamirew T, Kawo NS, Chukalla AD (2021) Performance evaluation and comparison of satellite-derived rainfall datasets over the Ziway Lake Basin, Ethiopia. Climate 9(7):113

  • Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M, Oki R, Nakamura K, Iguchi T (2014) The global precipitation measurement mission. Bull Am Meteor Soc 95(5):701–722

    ADS  Google Scholar 

  • Hounguè NR, Ogbu KN, Almoradie ADS, Evers M (2021) Evaluation of the performance of remotely sensed rainfall datasets for flood simulation in the transboundary Mono River catchment, Togo and Benin. J Hydrol Regional Stud 36:100875

  • Hsu J, Huang W-R, Liu P-Y, Li X (2021) Validation of CHIRPS precipitation estimates over Taiwan at multiple timescales. Remote Sens 13(2):254

    ADS  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ (2010) The TRMM Multi-Satellite Precipitation Analysis (TMPA). In: Gebremichael M., Hossain F (eds) Satellite rainfall applications for surface hydrology. Springer, Dordrecht pp 3–22

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–45

    ADS  Google Scholar 

  • Hunziker S, Brönnimann S, Calle J, Moreno I, Andrade M, Ticona L, Huerta A, Lavado-Casimiro W (2018) Effects of undetected data quality issues on climatological analyses. Clim Past 14(1):1–20

    Google Scholar 

  • Jiang S, Ren L, Yong B, Hong Y, Yang X, Yuan F (2016) Evaluation of latest TMPA and CMORPH precipitation products with independent rain gauge observation networks over high-latitude and low-latitude basins in China. Chin Geogra Sci 26(4):439–455

    Google Scholar 

  • Jiang X, Liu Y, Wu Y, Wang G, Zhang X, Meng Q, Gu P, Liu T (2021) Evaluation of the performance of multi-source precipitation data in Southwest China. Water 13(22):3200

    Google Scholar 

  • Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5(3):487–503

    ADS  Google Scholar 

  • Khandu, Awange JL, Forootan E (2016) An evaluation of high-resolution gridded precipitation products over Bhutan (1998–2012). Int J Climatol 36(3):1067–1087

    Google Scholar 

  • Kidd C (2001) Satellite rainfall climatology: a review. Int J Climatol 21(9):1041–1066

    Google Scholar 

  • Kimani M, Hoedjes J, Su Z (2018) Bayesian bias correction of satellite rainfall estimates for climate studies. Remote Sens 10(7):1074

    ADS  Google Scholar 

  • Larbi I, Hountondji F, Annor T, Agyare W, MwangiGathenya J, Amuzu J (2018) Spatio-temporal trend analysis of rainfall and temperature extremes in the Vea Catchment Ghana. Climate 6(4):87

    Google Scholar 

  • Lawrimore JH, Menne MJ, Gleason BE, Williams CN, Wuertz DB, Vose RS, Rennie J (2011) An overview of the global historical climatology network monthly mean temperature data set, version 3. J Geophys Res 116(D19):D19121

  • Le A, Pricope N (2017) Increasing the accuracy of runoff and streamflow simulation in the Nzoia Basin, Western Kenya, through the incorporation of satellite-derived CHIRPS data. Water 9(2):114

    Google Scholar 

  • Le M-H, Lakshmi V, Bolten J, Bui DD (2020) Adequacy of Satellite-derived Precipitation Estimate for Hydrological Modeling in Vietnam Basins. J Hydrol 586:124820

    Google Scholar 

  • Li K, Tian F, Khan MYA, Xu R, He Z, Yang L, Lu H, Ma Y (2021) A high-accuracy rainfall dataset by merging multiple satellites and dense gauges over the southern Tibetan Plateau for 2014–2019 warm seasons. Earth Syst Sci Data 13(11):5455–5467

    ADS  Google Scholar 

  • Li W, Sun W, He X, Scaioni M, Yao D, Chen Y, Gao J, Li X, Cheng G (2019) Improving CHIRPS daily satellite-precipitation products using coarser ground observations. IEEE Geosci Remote Sens Lett 16(11):1678–1682

    ADS  Google Scholar 

  • Liu CY, Aryastana P, Liu GR, Huang WR (2020) Assessment of satellite precipitation product estimates over Bali Island. Atmos Res 244:105032

    Google Scholar 

  • Liu J, Shangguan D, Liu S, Ding Y, Wang S, Wang X (2019) Evaluation and comparison of CHIRPS and MSWEP daily-precipitation products in the Qinghai-Tibet Plateau during the period of 1981–2015. Atmos Res 230:104634

  • López López P, Immerzeel WW, Rodríguez Sandoval EA, Sterk G, Schellekens J (2018) Spatial downscaling of satellite-based precipitation and its impact on discharge simulations in the Magdalena River Basin in Colombia. Front Earth Sci 6:23

    Google Scholar 

  • Lu S, Veldhuis M-CT, van de Giesen N (2020) A methodology for multiobjective evaluation of precipitation products for extreme weather (in a data-scarce environment). J Hydrometeorol 21(6):1223–1244

    ADS  Google Scholar 

  • Luo X, Wu W, He D, Li Y, Ji X (2019) Hydrological simulation using TRMM and CHIRPS precipitation estimates in the Lower Lancang-Mekong River Basin. Chin Geogra Sci 29(1):13–25

    Google Scholar 

  • Maggioni V, Massari C (2018) On the performance of satellite precipitation products in riverine flood modeling: A review. J Hydrol 558:214–224

    Google Scholar 

  • Maggioni V, Meyers PC, Robinson MD (2016) A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) Era. J Hydrometeorol 17(4):1101–1117

    ADS  Google Scholar 

  • Maidment RI, Grimes D, Black E, Tarnavsky E, Young M, Greatrex H, Allan RP, Stein T, Nkonde E, Senkunda S, Alcantara EMU (2017) A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci Data 4:170063

    PubMed  PubMed Central  Google Scholar 

  • Mega T, Ushio T, Takahiro M, et al. (2014) Gauge adjusted global satellite mapping of precipitation (GSMaP_Gauge). IEEE Trans Geosci Remote Sens 57(4):1928–1935

  • Mesa O, Urrea V, Ochoa A (2021) Trends of Hydroclimatic Intensity in Colombia. Climate 9(7):120

    Google Scholar 

  • Mokhtari S, Sharafati A, Raziei T (2021) Validation of CHIRPS satellite-based precipitation data against the in situ observations using the Copula method: a case study of Kosar Dam basin Iran. Acta Geophys 70:465–484

    ADS  Google Scholar 

  • Montes C, Acharya N, Hassan SMQ, Krupnik TJ (2021) Intense precipitation events during the monsoon season in Bangladesh as captured by satellite-based products. J Hydrometeorol 22(6):1405–1419

  • Moraes Cordeiro AL, Blanco CJC (2021) Assessment of satellite products for filling rainfall data gaps in the Amazon region. Nat Resour Model 34(2):e12298

  • Mu Y, Biggs T, Shen SSP (2021) Satellite-based precipitation estimates using a dense rain gauge network over the Southwestern Brazilian Amazon: implication for identifying trends in dry season rainfall. Atmos Res 261:105741

    Google Scholar 

  • Muthoni FK, Odongo VO, Ochieng J, Mugalavai EM, Mourice SK, Hoesche-Zeledon I, Mwila M, Bekunda M (2018) Long-term spatial-temporal trends and variability of rainfall over Eastern and Southern Africa. Theoret Appl Climatol 137(3–4):1869–1882

    ADS  Google Scholar 

  • Nashwan MS, Shahid S, Wang X (2019) Assessment of satellite-based precipitation measurement products over the hot desert climate of Egypt. Remote Sensing 11(5):555

    ADS  Google Scholar 

  • Nawaz M, Iqbal MF, Mahmood I (2021) Validation of CHIRPS satellite-based precipitation dataset over Pakistan. Atmos Res 248:105289

    Google Scholar 

  • Ngoma H, Wen W, Ojara M, Ayugi B (2021) Assessing current and future spatiotemporal precipitation variability and trends over Uganda, East Africa, based on CHIRPS and regional climate model datasets. Meteorol Atmos Phys 133(3):823–843

    ADS  Google Scholar 

  • Nkunzimana A, Bi S, Alriah MAA, Zhi T, Kur NAD (2020) Comparative analysis of the performance of satellite‐based rainfall products over various topographical unities in Central East Africa: case of Burundi. Earth Space Sci 7(5):e2019EA000834

  • Ogbu KN, Hounguè NR, Gbode IE, Tischbein B (2020) Performance evaluation of satellite-based rainfall products over Nigeria. Climate 8(10):103

    Google Scholar 

  • Okrah TM, Quaye-Ballard JA, Andam-Akorful SA, Sulemana IA (2019) Assessing spatial and temporal precipitation dynamics in Upper East Region of Ghana using Chirps data from 1981 to 2016. Int J Geogr Geol 8(4):110–127

    Google Scholar 

  • Omondi CK, Rientjes THM, Booij MJ, Nelson AD (2021) Satellite rainfall bias assessment for crop growth simulation – a case study of maize growth in Kenya. Agric Water Manag 258:107204

    Google Scholar 

  • Paca VHdM, Espinoza-Dávalos G, Moreira D, Comair G (2020) Variability of trends in precipitation across the Amazon River basin determined from the CHIRPS precipitation product and from station records. Water 12(5):1244

    Google Scholar 

  • Pai LS, Rajeevan M, Sreejith OP, Satbhai NS, Mukhopadhyay B (2014) Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 65:1–18

    Google Scholar 

  • Pandey V, Srivastava PK, Singh SK, Petropoulos GP, Mall RK (2021) Drought identification and trend analysis using long-term CHIRPS satellite precipitation product in Bundelkhand India. Sustainability 13(3):1042

    Google Scholar 

  • Pang J, Zhang H, Xu Q, Wang Y, Wang Y, Zhang O, Hao J (2020) Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales. Hydrol Earth Syst Sci 24(7):3603–3626

    ADS  Google Scholar 

  • Paredes-Trejo FJ, Barbosa HA, Lakshmi Kumar TV (2017) Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J Arid Environ 139:26–40

    Google Scholar 

  • Peng F, Zhao S, Chen C, Cong D, Wang Y, Ouyang H (2020) Evaluation and comparison of the precipitation detection ability of multiple satellite products in a typical agriculture area of China. Atmos Res 236:104814

    Google Scholar 

  • Phoeurn C, Ly S (2018) Assessment of satellite rainfall estimates as a pre-analysis for water environment analytical tools: a case study for Tonle Sap Lake in Cambodia. Eng J 22(1):229–241

    Google Scholar 

  • Poméon T, Jackisch D, Diekkrüger B (2017) Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. J Hydrol 547:222–235

    Google Scholar 

  • Popovych V, Dunaieva I (2021) Assessment of the GPM IMERG and CHIRPS precipitation estimations for the steppe part of the Crimea. Meteorol Hydrol Water Manag 9(1-2):133088

  • Pradhan RK, Markonis Y, Vargas Godoy MR, Villalba-Pradas A, Andreadis KM, Nikolopoulos EI, Papalexiou SM, Rahim A, Tapiador FJ, Hanel M (2022) Review of GPM IMERG performance: a global perspective. Remote Sens Environ 268:112754

    Google Scholar 

  • Rahmawati N, Rahayu K, Yuliasari ST (2021) Performance of daily satellite-based rainfall in groundwater basin of Merapi Aquifer System, Yogyakarta. Theor Appl Climatol 146:173–190

  • Rivera JA, Hinrichs S, Marianetti G (2019) Using CHIRPS dataset to assess wet and dry conditions along the Semiarid Central-Western Argentina. Adv Meteorol 2019:1–18

    Google Scholar 

  • Rivera JA, Marianetti G, Hinrichs S (2018) Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmos Res 213:437–449

    Google Scholar 

  • Rusli SR, Weerts AH, Taufiq A, Bense VF (2021) Estimating water balance components and their uncertainty bounds in highly groundwater-dependent and data-scarce area: an example for the Upper Citarum basin. J Hydrol Reg Stud 37:100911

  • Sacré Regis MD, Mouhamed L, Kouakou K, Adeline B, Arona D, Houebagnon Saint JC, Koffi Claude AK, Talnan Jean HC, Salomon O, Issiaka S (2020) Using the CHIRPS dataset to investigate historical changes in precipitation extremes in West Africa. Climate 8(7):84

    Google Scholar 

  • Saeidizand R, Sabetghadam S, Tarnavsky E, Pierleoni A (2018) Evaluation of CHIRPS rainfall estimates over Iran. Q J R Meteorol Soc 144(S1):282–291

    ADS  Google Scholar 

  • Sharannya TM, Al-Ansari N, Deb Barma S, Mahesha A (2020) Evaluation of Satellite precipitation products in simulating streamflow in a humid tropical catchment of India using a semi-distributed hydrological model. Water 12(9):22

    Google Scholar 

  • Shen Z, Yong B, Gourley JJ, Qi W, Lu D, Liu J, Ren L, Hong Y, Zhang J (2020) Recent global performance of the Climate Hazards group Infrared Precipitation (CHIRP) with Stations (CHIRPS). J Hydrol 591:125284

  • Solakian J, Maggioni V, Godrej AN (2020) On the Performance of satellite-based precipitation products in simulating streamflow and water quality during hydrometeorological extremes. Front Environ Sci 8:585451

  • Saha S, Moorthi S, Pan H-L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y-T, Chuang H-Y, Juang H-MH, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J-K, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C-Z, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteor Soc 91(8):1015–1058

    ADS  Google Scholar 

  • Sulugodu B, Deka PC (2019) Evaluating the performance of CHIRPS satellite rainfall data for streamflow forecasting. Water Resour Manage 33(11):3913–3927

    Google Scholar 

  • Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu KL (2018) A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev Geophys 56(1):79–107

    ADS  Google Scholar 

  • Tan ML, Gassman PW, Liang J, Haywood JM (2021) A review of alternative climate products for SWAT modelling: sources, assessment and future directions. Sci Total Environ 795:148915

    ADS  CAS  PubMed  Google Scholar 

  • Tang G, Clark MP, Papalexiou SM, Ma Z, Hong Y (2020) Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens Environ 240:111697

  • Ullah W, Wang G, Ali G, Tawia Hagan D, Bhatti A, Lou D (2019) Comparing multiple precipitation products against in-situ observations over different climate regions of Pakistan. Remote Sens 11(6):628

  • Upadhyay S, Silwal P, Prajapati R, Talchabhadel R, Shrestha S, Duwal S, Lakhe H (2022) Evaluating magnitude agreement and occurrence consistency of CHIRPS product with ground-based observations over medium-sized river basins in Nepal. Hydrology 9(8):146

    Google Scholar 

  • Umer Y, Ettema J, Jetten V, Steeneveld G-J, Ronda R (2021) Evaluation of the WRF model to simulate a high-intensity rainfall event over Kampala, Uganda. Water 13(6):873

  • Usman M, Nichol JE (2020) A spatio-temporal analysis of rainfall and drought monitoring in the Tharparkar Region of Pakistan. Remote Sens 12(3):580

  • Usman M, Nichol JE, Ibrahim AT, Buba LF (2018) A spatio-temporal analysis of trends in rainfall from long term satellite rainfall products in the Sudano Sahelian zone of Nigeria. Agric Meteorol 260–261:273–286

    Google Scholar 

  • van den Besselaar EJM, Haylock MR, van der Schrier G, Klein Tank AMG (2011) A European daily high-resolution observational gridded data set of sea level pressure. J Geophys Res 116:D11110

    ADS  Google Scholar 

  • Venkatesh K, Krakauer NY, Sharifi E, Ramesh H, Romano F (2020) Evaluating the performance of secondary precipitation products through statistical and hydrological modeling in a mountainous tropical basin of India. Adv Meteorol 2020:1–23

    Google Scholar 

  • Wang M, Rezaie-Balf M, Naganna SR, Yaseen ZM (2021) Sourcing CHIRPS precipitation data for streamflow forecasting using intrinsic time-scale decomposition based machine learning models. Hydrol Sci J 66(9):1437–1456

    Google Scholar 

  • Wang X, Li B, Chen Y, Guo H, Wang Y, Lian L (2020) Applicability evaluation of multisource satellite precipitation data for hydrological research in arid mountainous areas. Remote Sens 12(18):2886

    ADS  Google Scholar 

  • Wei L, Jiang S, Ren L, Zhang L, Wang M, Duan Z (2020) Preliminary utility of the retrospective IMERG precipitation product for large-scale drought monitoring over Mainland China. Remote Sens 12(18):2993

    ADS  Google Scholar 

  • Wenhaji Ndomeni C, Cattani E, Merino A, Levizzani V (2018) An observational study of the variability of East African rainfall with respect to sea surface temperature and soil moisture. Q J R Meteorol Soc 144(S1):384–404

    ADS  Google Scholar 

  • Wild A, Chua Z-W, Kuleshov Y (2021) Evaluation of satellite precipitation estimates over the South West Pacific Region. Remote Sens 13(19):3929

    ADS  Google Scholar 

  • Wiwoho BS, Astuti IS, Alfarizi IAG, Sucahyo HR (2021) Validation of three daily satellite rainfall products in a humid tropic watershed, Brantas, Indonesia: implications to land characteristics and hydrological modelling. Hydrology 8(4):154

    Google Scholar 

  • Wu Z, Xu Z, Wang F, He H, Zhou J, Wu X, Liu Z (2018) Hydrologic evaluation of multi-source satellite precipitation products for the Upper Huaihe River Basin China. Remote Sens 10(6):840

    ADS  Google Scholar 

  • Xavier ACF, Rudke AP, Serrão EAdO, Terassi PMdB, Pontes PRM (2021) Evaluation of satellite-derived products for the daily average and extreme rainfall in the Mearim River Drainage Basin (Maranhão, Brazil). Remote Sens 13(21):4393

    ADS  Google Scholar 

  • Xia X, Liu Y, Jing W, Yao L (2021) Assessment of four satellite-based precipitation products over the Pearl River Basin, China. IEEE Access 9:97729–97746

    Google Scholar 

  • Xiang Y, Chen J, Li L, Peng T, Yin Z (2021) Evaluation of eight global precipitation datasets in hydrological modeling. Remote Sens 13(14):2831

    ADS  Google Scholar 

  • Xiao S, Xia J, Zou L (2020) Evaluation of multi-satellite precipitation products and their ability in capturing the characteristics of extreme climate events over the Yangtze River Basin. China. Water 12(4):1179

    Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteor Soc 93(9):1401–1415

    ADS  Google Scholar 

  • Yilmaz KK, Derin Y (2014) Evaluation of multiple satellite-based precipitation products over complex topography. J Hydrometeorol 15(4):1498–1516

    ADS  Google Scholar 

  • Yu C, Hu D, Duan X, Zhang Y, Liu M, Wang S (2020) Rainfall-runoff simulation and flood dynamic monitoring based on CHIRPS and MODIS-ET. Int J Remote Sens 41(11):4206–4225

    Google Scholar 

  • Yudianto D, Ginting BM, Sanjaya S, Rusli SR, Wicaksono A (2021) A framework of dam-break hazard risk mapping for a data-sparse region in Indonesia. ISPRS Int J Geo-Inform 10(3):110

    Google Scholar 

  • Zambrano F, Wardlow B, Tadesse T, Lillo-Saavedra M, Lagos O (2017) Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. Atmos Res 186:26–42

    Google Scholar 

  • Zhang Y, Wu C, Yeh PJF, Li J, Hu BX, Feng P, Jun C (2014) Evaluation and comparison of precipitation estimates and hydrologic utility of CHIRPS, TRMM 3B42 V7 and PERSIANN-CDR products in various climate regimes. Atmos Res 265(4):12

    Google Scholar 

  • Zhao H, Ma Y (2019) Evaluating the drought-monitoring utility of four satellite-based quantitative precipitation estimation products at global scale. Remote Sens 11(17):2010

    ADS  Google Scholar 

  • Zheng J, Feng LL, Kun WT (2016) Spatial downscaling simulation of monthly precipitation based on TRMM 3B43 data in the Western Sichuan Plateau. Chin J Agrometeorol 37(2):245–254

    Google Scholar 

Download references

Acknowledgements

We would also like to thank the editor and reviewers for their suggestions that improved this paper.

Funding

This research was funded by the Ministry of Higher Education Malaysia under Long-term Research Grant Scheme project 2, grant number LRGS/1/2020/UKM-USM/01/6/2, which is under the program of LRGS/1/2020/UKM/01/6.

Author information

Authors and Affiliations

Authors

Contributions

M. L. T. contributed to the study conception and design. Material preparation, data collection, and analysis were performed by H. D. The first draft of the manuscript was written by H. D.; other authors commented and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mou Leong Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Tan, M.L., Zhang, F. et al. Evaluating the effectiveness of CHIRPS data for hydroclimatic studies. Theor Appl Climatol 155, 1519–1539 (2024). https://doi.org/10.1007/s00704-023-04721-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04721-9

Navigation