Skip to main content
Log in

Modeling and spatial characterization of aerosols at Middle East AERONET stations

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

In this paper, we employed an autoregressive integrated moving average (ARIMA) model to simulate aerosol optical depth time series from the ground-based AErosol RObotic NETwork (AERONET) from 2012 to 2021. To test the validity and applicability of the developed ARIMA model, we correlated the ARIMA predicted for 2021 with AERONET network data and obtained a correlation coefficient of ~ 0.9. Additionally, we compared the results with the space-based Moderate Resolution Imaging Spectroradiometer (MODIS) data for the Middle East and obtained a considerable correlation coefficient of ~ 0.5. We employ the threshold of the Angstrom exponent (AE) as a measure of the spectral dependence of aerosol optical depth (AOD), which ranges between 0 and 1, to characterize aerosol types. The results show weighted averages of AOD ≥ 0.2 and AE ≥ 1.0 for fine-mode aerosol spray in IASBS (36.705 N, 48.507 E), AOD > 0.2 and AE < 1.0 for dust aerosols in Nes_Ziona (31.922 N, 34.789 E), AOD > 0.4, 0.5 < AE < 1.0 for dust and maritime aerosol for Masdar _Institute station (24.442 N, 54.617 E) and AE < 1, AOD ≤ 0.5 for dust and maritime aerosol in Hada_El-Sham (21.802 N, 39.729E).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data are available upon request.

References

  • Abish B, Mohanakumar K (2013) A stochastic model for predicting aerosol optical depth over the north Indian region. Int. J. Remote Sens. 34:1449–1458

    Article  Google Scholar 

  • Alam K, Iqbal MJ, Blaschke T, Qureshi S (2010) Monitoring spatiotemporal variations in aerosols and aerosol–cloud interactions over Pakistan using MODIS data Gulzar khan. Adv. Space Res. 46:1162–1176

    Article  Google Scholar 

  • Anoruo CM (2020) Space and Ground-based remote sensing comparison of seasonal Interaction of Aerosol-Cloud-Precipitable Water. Atoms Environ 243:117864

    Article  Google Scholar 

  • Anoruo CM (2021) Subseasonal aerosol characterization at the Middle East regions of AERONET site. Urban Clim. 37(2021):100827. https://doi.org/10.1016/j.uclim.2021.100827

    Article  Google Scholar 

  • Anoruo CM, Ibe OC, Ndubuisi KN (2022a) Aerosol load-cloud cover correlation: a potential clue for the investigation of aerosol indirect impact on climate of Europe and Africa. Aerosol Sci. Eng. https://doi.org/10.1007/s41810-022-00160-7

  • Anoruo C (2022b) Monsoon-seasonal validation of MODIS aerosol optical depth and characterization using AERONET observation retrieve over Italy. Environ. Res. 204(2022):111985

    Article  Google Scholar 

  • Ballester EB, Valls GC, Carrasco-Rodriguez JL, Olivas ES, del Valle-Tascon S (2002) Effective 1-day ahead prediction of hourly surface ozone concentrations in Eastern Spain using linear models and neural networks. Ecol. Model. 156:27–41

    Article  Google Scholar 

  • Boucher O et al (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattnes G-K, Tignos M, Allen SK, Boshung J, Midgley PM (eds) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (2008) Time Series Analysis: Forecasting and Control, 4th edn. John Wiley & Sons, Inc., U.K.

    Book  Google Scholar 

  • Che H, Qi B, Zhao H, Xia X, Eck TF, Goloub P, Dubovik O, Estelles V, Cuevas-Agulló E, Blarel L, Wu Y (2018) Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China. Atmos. Chem. Phys. 18:405–425

    Article  Google Scholar 

  • Chin M, Diehl T, Tan Q, Prospero JM, Kahn RA, Remer LA, Yu H, Sayer AM, Bian H, Geogdzhayev IV, Holben BN, Howell SG, Huebert BJ, Hsu NC, Kim D, Kucsera TL, Levy RC, Mishchenko MI, Pan X et al (2014) Multidecadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos. Chem. Phys. 14:3657–3690

    Article  Google Scholar 

  • Chudnovsky AA et al (2017) Spatial and temporal variability in desert dust and anthropogenic pollution in Iraq, 1997–2010. J. Air Waste Manage. Assoc. 67(1):17–26. https://doi.org/10.1080/10962247.2016.1153528

    Article  Google Scholar 

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 105(20):696, 673–696, 620

    Google Scholar 

  • Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufmann YJ, King MD, Tanre D, Slusker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J.Atmos. Sci. 59:590–608

    Article  Google Scholar 

  • Eck TF, Holben BN, Dubovic O, Smirnov A, Goloub P, Chen HB, Chatenet B, Gomes L, Zhang XY, Tsay SC, Ji Q, Giles D, Slutsker I (2005) Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific. J. Geophys. Res. 110(D06202). https://doi.org/10.1029/2004JD005274

  • Eck TF, Holben BN, Reid JS, Dubovic O, Smirnov A, O’Neil NT, Slutsker I, Kinne S (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 104(D24):31 333–31 349

    Article  Google Scholar 

  • Garibzadeh M, Alam K (2019) Study of aerosol optical properties in the Middle East during. Desert 2(24)

  • Guirado C, Cuevas E, Cachorro VE, Toledano C, AlonsoPerez S, Bustos JJ, Basart S, Romero PM, Camino C, Mimouni M, Zeudmi L, Goloub P, Baldasano JM, de Frutos AM (2014) Aerosol characterization at the Saharan AERONET site Tamanrasset. Atmos. Chem. Phys. 14:11753–11773

    Article  Google Scholar 

  • Holben BN, Tanre D, Smirnov A, Eck TF, Slutsker I, Abuhassan N, Newcomb WW, Schafer JS, Chatenet B, Lavenu F, Kaufman YJ, Castle JV, Setzer A, Markham B, Clark D, Frouin R, Halthore R, Karneli A, O’Neill NT et al (2001) Aerosol optical depth from AERONET. J. Geophys. Res. Atmos. 106:12067–12097

    Article  Google Scholar 

  • Horowitz HM, Garland RM, Thatcher M, Landman WA, Dedekind D, Merwe J, Engelbrecht FA (2017) Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET. Atmos. Chem. Phys. 17:13999–14023

    Article  Google Scholar 

  • Johnson JS et al (2018) The importance of comprehensive parameter sampling and multiple observations for robust constraint of aerosol radiative forcing. Chem Phys Discuss Atmos. https://doi.org/10.5194/acp-2018-174

  • Kumar KR, Yin Y, Sivakumar V, Kang N, Yu X, Diao Y, Reddy RR (2015) Aerosol climatology and discrimination of aerosol types retrieved from MODIS, MISR and OMI over Durban (29.88°S, 31.02°E), South Africa. Atmos Environ. Times 117:9–18

    Article  Google Scholar 

  • Lee J, Kim J, Song CH, Kim SB, Chun Y, Sohn BJ, Holben BN (2010) Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos. Environ. 44:3110–3117

    Article  Google Scholar 

  • Lee LA, Reddington CL, Carslaw KS (2016) On the relationship between aerosol model uncertainty and radiative forcing uncertainty. Proc Natl Acad Sci 113:5820–5827

    Article  Google Scholar 

  • Liang WM, Wei HY, Kuo HW (2009) Association between daily mortality from respiratory and cardiovascular diseases and air pollution in Taiwan. Environ Res. 109:51–58

    Article  Google Scholar 

  • Michibata T, Suzuki K, Sato Y, Takemura T (2016) The sources of discrepancies in aerosol-cloud- precipitation interactions between GCM and A-train retrievals. Atmos. Chem. Phys. 16:15413–15424

    Article  Google Scholar 

  • Mielonen T, Arola A, Komppula M, Kukkonen J, Koskinen J, De Leeuw G, Lehtinen KEJ (2009) Comparison of CALIOP level 2 aerosol subtypes to aerosol types derived from AERONET inversion data. Geophys. Res. Lett. 36:1–5

    Article  Google Scholar 

  • Nakajima T, Tonna G, Rao R, Boi P, Kaufman Y, Holben B (1996) Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl. Opt. 35:2672–2686

    Article  Google Scholar 

  • O’Neill NT, Eck TF, Smirnov A, Holben BN, Thulasiraman S (2003) Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. 108:4559

    Article  Google Scholar 

  • Pathak B, Bhuyan PK, Gogoi M, Bhuyan K (2012) Seasonal heterogeneity in aerosol types over Dibrugarh-northeastern India. Atmos. Environ.:307–315

  • Piwowar JM, Ledrew EF (2002) ARIMA Time Series Modeling of Remote Sensing Imagery: A New Approach for Climate Change Studies. Int. J. Remote Sens. 23:5225–5248

    Article  Google Scholar 

  • Possner A, Zubler EM, Lohmann U, Schär C (2016) The resolution dependence of cloud effects and ship-induced aerosol-cloud interactions in marine stratocumulus. J Geophys Res Atmos 121:4810–4829

    Article  Google Scholar 

  • Shi, J.J., Matsui, T., Tao, W-K., Peters-Lidard, C., Chin, M., Tan, Q., Kemp, E. (2014). Implementation of an aerosol-cloud microphysics-radiation coupling into the nasa unified WRF: simulation results for the 6–7 August 2006 AMMA special observing period. Q J R Meteorol Soc.https://doi.org/10.1002/qj.2286

  • Soltani S, Modarres R, Eslamian SS (2007) The use of time series modeling for the determination of rainfall climates of Iran Int. J. Climatol. 27:819–829

    Article  Google Scholar 

  • Soni K, Kapoor S, Parmar KS, Kaskaoutis DG (2014) Statistical analysis of aerosols over the Gangetic Himalayan region using ARIMA model based on long-term MODIS observations. Atmos. Res. 149:174–192

    Article  Google Scholar 

  • Soni K, Parmar KS, Kapoor S (2015) Time series model prediction and trend variability of aerosol optical depth over coal mines in India. Environ Sci Pollut Res 22(5):3652–3671

    Article  Google Scholar 

  • Wang C, Liu Q, Ying N, Wang X, Ma J (2013) Air quality evaluation on an urban scale based on MODIS satellite images. Atmos. Res. 132:22–34

    Google Scholar 

  • Xie Y, Wang Y, Zhang K (2015) Daily estimation of ground-level PM 2.5 concentrations over Beijing using 3 km resolution MODIS AOD. Environ. Sci. Technol. 49:12280–12288

    Article  Google Scholar 

  • Zhao C, Wang Y, Shift X, Zhang D, Wang C, Jiang JH, Zhang Q, Fan H (2019) Estimating the contribution of local primary emissions to particulate pollution using high-density station observations. J Geophys Res: Atmos 124:1648–1661. https://doi.org/10.1029/2018JD028888

    Article  Google Scholar 

  • Zheng C, Zhao C, Zhu Y, Wang Y, Shi X, Wu X, Chen T, Wu F, Qiu Y (2017) Analysis of influential factors for the relationship between PM2.5 and AOD in Beijing. Atmos. Chem. Phys. 17:13473–13489

    Article  Google Scholar 

  • Zhou W, Wu X, Ding S, Cheng Y (2020) Predictive analysis of the air quality indicators in the Yangtze river delta in China: an application of a novel seasonal gray model. Sci. Total Environ. 748. https://doi.org/10.1016/j.scitotenv.2020.141428

Download references

Acknowledgements

The principal investigator of AERONET and MODIS is appreciated for the provision of data. We appreciate the critical comments and suggestions of the reviewers and editor that improved the manuscript.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

C.M Anoruo—conceptualization, methodology, software, data curation, writing—original draft preparation, and visualization. S. Bukhari—conceptualization, methodology, software, data curation, and visualization. O.K Nwofor—conceptualization, methodology, software, and data curation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chukwuma Moses Anoruo.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anoruo, C.M., Bukhari, S.N.H. & Nwofor, O.K. Modeling and spatial characterization of aerosols at Middle East AERONET stations. Theor Appl Climatol 152, 617–625 (2023). https://doi.org/10.1007/s00704-023-04384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04384-6

Keywords

Navigation